Abstract
Reoviruses are encapsidated double-stranded RNA viruses that cause systemic disease in mice after peroral (p.o.) inoculation and primary replication in the intestine. In this study, we define components of the immune system involved in the clearing of reovirus from the proximal small intestine. The intestines of immunocompetent adult CB17, 129, and C57BL/6 mice were cleared of reovirus serotype 3 clone 9 (T3C9) within 7 days of p.o. inoculation. Antigen-specific lymphocytes were important for the clearance of intestinal infection, since severe combined immunodeficient (SCID) mice failed to clear T3C9 infection. To define specific immune components required for intestinal clearance, reovirus infection of mice with null mutations in the immunoglobulin M (IgM) transmembrane exon (MuMT; B cell and antibody deficient) or beta 2 microglobulin gene (beta 2-/-; CD8 deficient) was evaluated. beta 2-/- mice cleared reovirus infection with normal kinetics, while MuMT mice showed delayed clearance of T3C9 7 to 11 days after p.o. inoculation. Adoptive transfer of splenic lymphocytes from reovirus-immune CB17 mice inhibited growth of T3C9 in CB17 SCID mouse intestine 11 days after p.o. inoculation. The efficiency of viral clearance by adoptively transferred cells was significantly diminished by depletion of B cells prior to adoptive transfer. Results in SCID and MuMT mice demonstrate an important role for B cells or IgG in clearance of reovirus from the intestines. Polyclonal reovirus-immune rabbit serum, protein A-purified immune IgG, and murine monoclonal IgG2a antibody specific for reovirus outer capsid protein sigma 3 administered intraperitoneally all normalized clearance of reovirus from intestinal tissue in MuMT mice. This result demonstrates an IgA-independent role for IgG in the clearance of intestinal virus infection. Polyclonal reovirus-immune serum also significantly decreased reovirus titers in the intestines of SCID mice, demonstrating a T-cell-independent role for antibody in the clearance of intestinal reovirus infection. B cells and circulating IgG play an important role in the clearance of reovirus from intestines, suggesting that IgG may play a more prominent functional role at mucosal sites of primary viral replication than was previously supposed.
Full Text
The Full Text of this article is available as a PDF (253.4 KB).
Selected References
These references are in PubMed. This may not be the complete list of references from this article.
- Amerongen H. M., Wilson G. A., Fields B. N., Neutra M. R. Proteolytic processing of reovirus is required for adherence to intestinal M cells. J Virol. 1994 Dec;68(12):8428–8432. doi: 10.1128/jvi.68.12.8428-8432.1994. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Battegay M., Moskophidis D., Waldner H., Bründler M. A., Fung-Leung W. P., Mak T. W., Hengartner H., Zinkernagel R. M. Impairment and delay of neutralizing antiviral antibody responses by virus-specific cytotoxic T cells. J Immunol. 1993 Nov 15;151(10):5408–5415. [PubMed] [Google Scholar]
- Besser T. E., Gay C. C., McGuire T. C., Evermann J. F. Passive immunity to bovine rotavirus infection associated with transfer of serum antibody into the intestinal lumen. J Virol. 1988 Jul;62(7):2238–2242. doi: 10.1128/jvi.62.7.2238-2242.1988. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Bodkin D. K., Fields B. N. Growth and survival of reovirus in intestinal tissue: role of the L2 and S1 genes. J Virol. 1989 Mar;63(3):1188–1193. doi: 10.1128/jvi.63.3.1188-1193.1989. [DOI] [PMC free article] [PubMed] [Google Scholar]
- CRAIG D. E., BROWN G. C. The relationship between poliomyelitis antibody and virus excretion from the pharynx and anus or orally infected monkeys. Am J Hyg. 1959 Jan;69(1):1–12. doi: 10.1093/oxfordjournals.aje.a119974. [DOI] [PubMed] [Google Scholar]
- Cebra J. J., Cuff C. F., Rubin D. H. Relationship between alpha/beta T cell receptor/CD8+ precursors for cytotoxic T lymphocytes in the murine Peyer's patches and the intraepithelial compartment probed by oral infection with reovirus. Immunol Res. 1991;10(3-4):321–323. doi: 10.1007/BF02919715. [DOI] [PubMed] [Google Scholar]
- Conner M. E., Crawford S. E., Barone C., Estes M. K. Rotavirus vaccine administered parenterally induces protective immunity. J Virol. 1993 Nov;67(11):6633–6641. doi: 10.1128/jvi.67.11.6633-6641.1993. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Cook J. R., Solheim J. C., Connolly J. M., Hansen T. H. Induction of peptide-specific CD8+ CTL clones in beta 2-microglobulin-deficient mice. J Immunol. 1995 Jan 1;154(1):47–57. [PubMed] [Google Scholar]
- Cuff C. F., Cebra C. K., Lavi E., Molowitz E. H., Rubin D. H., Cebra J. J. Protection of neonatal mice from fatal reovirus infection by immune serum and gut derived lymphocytes. Adv Exp Med Biol. 1991;310:307–315. doi: 10.1007/978-1-4615-3838-7_40. [DOI] [PubMed] [Google Scholar]
- Cuff C. F., Lavi E., Cebra C. K., Cebra J. J., Rubin D. H. Passive immunity to fatal reovirus serotype 3-induced meningoencephalitis mediated by both secretory and transplacental factors in neonatal mice. J Virol. 1990 Mar;64(3):1256–1263. doi: 10.1128/jvi.64.3.1256-1263.1990. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Custer R. P., Bosma G. C., Bosma M. J. Severe combined immunodeficiency (SCID) in the mouse. Pathology, reconstitution, neoplasms. Am J Pathol. 1985 Sep;120(3):464–477. [PMC free article] [PubMed] [Google Scholar]
- Dharakul T., Rott L., Greenberg H. B. Recovery from chronic rotavirus infection in mice with severe combined immunodeficiency: virus clearance mediated by adoptive transfer of immune CD8+ T lymphocytes. J Virol. 1990 Sep;64(9):4375–4382. doi: 10.1128/jvi.64.9.4375-4382.1990. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Dialynas D. P., Quan Z. S., Wall K. A., Pierres A., Quintáns J., Loken M. R., Pierres M., Fitch F. W. Characterization of the murine T cell surface molecule, designated L3T4, identified by monoclonal antibody GK1.5: similarity of L3T4 to the human Leu-3/T4 molecule. J Immunol. 1983 Nov;131(5):2445–2451. [PubMed] [Google Scholar]
- Doherty P. C., Hou S., Southern P. J. Lymphocytic choriomeningitis virus induces a chronic wasting disease in mice lacking class I major histocompatibility complex glycoproteins. J Neuroimmunol. 1993 Jul;46(1-2):11–17. doi: 10.1016/0165-5728(93)90228-q. [DOI] [PubMed] [Google Scholar]
- Feng N., Burns J. W., Bracy L., Greenberg H. B. Comparison of mucosal and systemic humoral immune responses and subsequent protection in mice orally inoculated with a homologous or a heterologous rotavirus. J Virol. 1994 Dec;68(12):7766–7773. doi: 10.1128/jvi.68.12.7766-7773.1994. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Fiette L., Aubert C., Brahic M., Rossi C. P. Theiler's virus infection of beta 2-microglobulin-deficient mice. J Virol. 1993 Jan;67(1):589–592. doi: 10.1128/jvi.67.1.589-592.1993. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Fox J. P. Modes of action of poliovirus vaccines and relation to resulting immunity. Rev Infect Dis. 1984 May-Jun;6 (Suppl 2):S352–S355. doi: 10.1093/clinids/6.supplement_2.s352. [DOI] [PubMed] [Google Scholar]
- GELFAND H. M., LeBLANC D. R., POTASH L., FOX J. P. Studies onthe development of natural immunity to poliomyelitis in Louisiana. IV. Natural infections with polioviruses following immunization with a formalin-inactivated vaccine. Am J Hyg. 1959 Nov;70:312–327. doi: 10.1093/oxfordjournals.aje.a120080. [DOI] [PubMed] [Google Scholar]
- George A., Kost S. I., Witzleben C. L., Cebra J. J., Rubin D. H. Reovirus-induced liver disease in severe combined immunodeficient (SCID) mice. A model for the study of viral infection, pathogenesis, and clearance. J Exp Med. 1990 Mar 1;171(3):929–934. doi: 10.1084/jem.171.3.929. [DOI] [PMC free article] [PubMed] [Google Scholar]
- HOWE H. Day-by-day response of vaccinated chimpanzees to poliomyelitic infection. Am J Public Health Nations Health. 1957 Jul;47(7):871–875. doi: 10.2105/ajph.47.7.871. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Haller B. L., Barkon M. L., Vogler G. P., Virgin H. W., 4th Genetic mapping of reovirus virulence and organ tropism in severe combined immunodeficient mice: organ-specific virulence genes. J Virol. 1995 Jan;69(1):357–364. doi: 10.1128/jvi.69.1.357-364.1995. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Heise M. T., Virgin H. W., 4th The T-cell-independent role of gamma interferon and tumor necrosis factor alpha in macrophage activation during murine cytomegalovirus and herpes simplex virus infections. J Virol. 1995 Feb;69(2):904–909. doi: 10.1128/jvi.69.2.904-909.1995. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Hou S., Doherty P. C., Zijlstra M., Jaenisch R., Katz J. M. Delayed clearance of Sendai virus in mice lacking class I MHC-restricted CD8+ T cells. J Immunol. 1992 Aug 15;149(4):1319–1325. [PubMed] [Google Scholar]
- Hou S., Fishman M., Murti K. G., Doherty P. C. Divergence between cytotoxic effector function and tumor necrosis factor alpha production for inflammatory CD4+ T cells from mice with Sendai virus pneumonia. J Virol. 1993 Oct;67(10):6299–6302. doi: 10.1128/jvi.67.10.6299-6302.1993. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Hyland L., Hou S., Coleclough C., Takimoto T., Doherty P. C. Mice lacking CD8+ T cells develop greater numbers of IgA-producing cells in response to a respiratory virus infection. Virology. 1994 Oct;204(1):234–241. doi: 10.1006/viro.1994.1527. [DOI] [PubMed] [Google Scholar]
- Keroack M., Fields B. N. Viral shedding and transmission between hosts determined by reovirus L2 gene. Science. 1986 Jun 27;232(4758):1635–1638. doi: 10.1126/science.3012780. [DOI] [PubMed] [Google Scholar]
- Kitamura D., Roes J., Kühn R., Rajewsky K. A B cell-deficient mouse by targeted disruption of the membrane exon of the immunoglobulin mu chain gene. Nature. 1991 Apr 4;350(6317):423–426. doi: 10.1038/350423a0. [DOI] [PubMed] [Google Scholar]
- Koller B. H., Marrack P., Kappler J. W., Smithies O. Normal development of mice deficient in beta 2M, MHC class I proteins, and CD8+ T cells. Science. 1990 Jun 8;248(4960):1227–1230. doi: 10.1126/science.2112266. [DOI] [PubMed] [Google Scholar]
- Ledbetter J. A., Herzenberg L. A. Xenogeneic monoclonal antibodies to mouse lymphoid differentiation antigens. Immunol Rev. 1979;47:63–90. doi: 10.1111/j.1600-065x.1979.tb00289.x. [DOI] [PubMed] [Google Scholar]
- Lehmann-Grube F., Dralle H., Utermöhlen O., Löhler J. MHC class I molecule-restricted presentation of viral antigen in beta 2-microglobulin-deficient mice. J Immunol. 1994 Jul 15;153(2):595–603. [PubMed] [Google Scholar]
- Lehmann-Grube F., Löhler J., Utermöhlen O., Gegin C. Antiviral immune responses of lymphocytic choriomeningitis virus-infected mice lacking CD8+ T lymphocytes because of disruption of the beta 2-microglobulin gene. J Virol. 1993 Jan;67(1):332–339. doi: 10.1128/jvi.67.1.332-339.1993. [DOI] [PMC free article] [PubMed] [Google Scholar]
- London S. D., Cebra-Thomas J. A., Rubin D. H., Cebra J. J. CD8 lymphocyte subpopulations in Peyer's patches induced by reovirus serotype 1 infection. J Immunol. 1990 Apr 15;144(8):3187–3194. [PubMed] [Google Scholar]
- London S. D., Cebra J. J., Rubin D. H. Intraepithelial lymphocytes contain virus-specific, MHC-restricted cytotoxic cell precursors after gut mucosal immunization with reovirus serotype 1/Lang. Reg Immunol. 1989 Mar-Apr;2(2):98–102. [PubMed] [Google Scholar]
- London S. D., Rubin D. H., Cebra J. J. Gut mucosal immunization with reovirus serotype 1/L stimulates virus-specific cytotoxic T cell precursors as well as IgA memory cells in Peyer's patches. J Exp Med. 1987 Mar 1;165(3):830–847. doi: 10.1084/jem.165.3.830. [DOI] [PMC free article] [PubMed] [Google Scholar]
- MARINE W. M., CHIN T. D., GRAVELLE C. R. Limitation of fecal and pharyngeal poliovirus excretion in Salk-vaccinated children. A family study during a type 1 poliomyelitis epidemic. Am J Hyg. 1962 Sep;76:173–195. doi: 10.1093/oxfordjournals.aje.a120272. [DOI] [PubMed] [Google Scholar]
- Matloubian M., Concepcion R. J., Ahmed R. CD4+ T cells are required to sustain CD8+ cytotoxic T-cell responses during chronic viral infection. J Virol. 1994 Dec;68(12):8056–8063. doi: 10.1128/jvi.68.12.8056-8063.1994. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Morrison L. A., Fields B. N. Parallel mechanisms in neuropathogenesis of enteric virus infections. J Virol. 1991 Jun;65(6):2767–2772. doi: 10.1128/jvi.65.6.2767-2772.1991. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Morrison L. A., Sidman R. L., Fields B. N. Direct spread of reovirus from the intestinal lumen to the central nervous system through vagal autonomic nerve fibers. Proc Natl Acad Sci U S A. 1991 May 1;88(9):3852–3856. doi: 10.1073/pnas.88.9.3852. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Muller D., Koller B. H., Whitton J. L., LaPan K. E., Brigman K. K., Frelinger J. A. LCMV-specific, class II-restricted cytotoxic T cells in beta 2-microglobulin-deficient mice. Science. 1992 Mar 20;255(5051):1576–1578. doi: 10.1126/science.1347959. [DOI] [PubMed] [Google Scholar]
- Nibert M. L., Furlong D. B., Fields B. N. Mechanisms of viral pathogenesis. Distinct forms of reoviruses and their roles during replication in cells and host. J Clin Invest. 1991 Sep;88(3):727–734. doi: 10.1172/JCI115369. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Palladino G., Mozdzanowska K., Washko G., Gerhard W. Virus-neutralizing antibodies of immunoglobulin G (IgG) but not of IgM or IgA isotypes can cure influenza virus pneumonia in SCID mice. J Virol. 1995 Apr;69(4):2075–2081. doi: 10.1128/jvi.69.4.2075-2081.1995. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Peters M. G., Secrist H., Anders K. R., Nash G. S., Rich S. R., MacDermott R. P. Normal human intestinal B lymphocytes. Increased activation compared with peripheral blood. J Clin Invest. 1989 Jun;83(6):1827–1833. doi: 10.1172/JCI114088. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Rodriguez M., Dunkel A. J., Thiemann R. L., Leibowitz J., Zijlstra M., Jaenisch R. Abrogation of resistance to Theiler's virus-induced demyelination in H-2b mice deficient in beta 2-microglobulin. J Immunol. 1993 Jul 1;151(1):266–276. [PubMed] [Google Scholar]
- Rubin D. H., Kornstein M. J., Anderson A. O. Reovirus serotype 1 intestinal infection: a novel replicative cycle with ileal disease. J Virol. 1985 Feb;53(2):391–398. doi: 10.1128/jvi.53.2.391-398.1985. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Rubin D. H. Reovirus serotype 1 binds to the basolateral membrane of intestinal epithelial cells. Microb Pathog. 1987 Sep;3(3):215–219. doi: 10.1016/0882-4010(87)90098-2. [DOI] [PubMed] [Google Scholar]
- Salk D. Eradication of poliomyelitis in the United States. I. Live virus vaccine-associated and wild poliovirus disease. Rev Infect Dis. 1980 Mar-Apr;2(2):228–242. doi: 10.1093/clinids/2.2.228. [DOI] [PubMed] [Google Scholar]
- Salk D. Eradication of poliomyelitis in the United States. III. Poliovaccines--practical considerations. Rev Infect Dis. 1980 Mar-Apr;2(2):258–273. doi: 10.1093/clinids/2.2.258. [DOI] [PubMed] [Google Scholar]
- Sherry B., Li X. Y., Tyler K. L., Cullen J. M., Virgin H. W., 4th Lymphocytes protect against and are not required for reovirus-induced myocarditis. J Virol. 1993 Oct;67(10):6119–6124. doi: 10.1128/jvi.67.10.6119-6124.1993. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Tardieu M., Powers M. L., Weiner H. L. Age dependent susceptibility to Reovirus type 3 encephalitis: role of viral and host factors. Ann Neurol. 1983 Jun;13(6):602–607. doi: 10.1002/ana.410130604. [DOI] [PubMed] [Google Scholar]
- Tyler K. L., Mann M. A., Fields B. N., Virgin H. W., 4th Protective anti-reovirus monoclonal antibodies and their effects on viral pathogenesis. J Virol. 1993 Jun;67(6):3446–3453. doi: 10.1128/jvi.67.6.3446-3453.1993. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Tyler K. L., McPhee D. A., Fields B. N. Distinct pathways of viral spread in the host determined by reovirus S1 gene segment. Science. 1986 Aug 15;233(4765):770–774. doi: 10.1126/science.3016895. [DOI] [PubMed] [Google Scholar]
- Tyler K. L., Virgin H. W., 4th, Bassel-Duby R., Fields B. N. Antibody inhibits defined stages in the pathogenesis of reovirus serotype 3 infection of the central nervous system. J Exp Med. 1989 Sep 1;170(3):887–900. doi: 10.1084/jem.170.3.887. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Virgin H. W., 4th, Bassel-Duby R., Fields B. N., Tyler K. L. Antibody protects against lethal infection with the neurally spreading reovirus type 3 (Dearing). J Virol. 1988 Dec;62(12):4594–4604. doi: 10.1128/jvi.62.12.4594-4604.1988. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Virgin H. W., 4th, Mann M. A., Fields B. N., Tyler K. L. Monoclonal antibodies to reovirus reveal structure/function relationships between capsid proteins and genetics of susceptibility to antibody action. J Virol. 1991 Dec;65(12):6772–6781. doi: 10.1128/jvi.65.12.6772-6781.1991. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Virgin H. W., 4th, Tyler K. L. Role of immune cells in protection against and control of reovirus infection in neonatal mice. J Virol. 1991 Oct;65(10):5157–5164. doi: 10.1128/jvi.65.10.5157-5164.1991. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Weiner D. B., Girard K., Williams W. V., McPhillips T., Rubin D. H. Reovirus type 1 and type 3 differ in their binding to isolated intestinal epithelial cells. Microb Pathog. 1988 Jul;5(1):29–40. doi: 10.1016/0882-4010(88)90078-2. [DOI] [PubMed] [Google Scholar]
- Weltzin R., Lucia-Jandris P., Michetti P., Fields B. N., Kraehenbuhl J. P., Neutra M. R. Binding and transepithelial transport of immunoglobulins by intestinal M cells: demonstration using monoclonal IgA antibodies against enteric viral proteins. J Cell Biol. 1989 May;108(5):1673–1685. doi: 10.1083/jcb.108.5.1673. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Wolf J. L., Rubin D. H., Finberg R., Kauffman R. S., Sharpe A. H., Trier J. S., Fields B. N. Intestinal M cells: a pathway for entry of reovirus into the host. Science. 1981 Apr 24;212(4493):471–472. doi: 10.1126/science.6259737. [DOI] [PubMed] [Google Scholar]