Abstract
Herpes simplex virus (HSV) mutants defective for thymidine kinase expression (TK-) have been reported to establish latent infection of sensory ganglia of mice, in that HSV latency-associated transcript is expressed, but to be defective for reactivation. In the present study, the mechanism of defective reactivation by TK- HSV was investigated. Latent infection established by each of three reactivation-defective HSV type 1 mutants was studied. Reactivation in explant culture was markedly enhanced by the addition of thymidine (dTdR) to the explant culture medium. Without added dTdR, reactivation occurred in 0 of 32 ganglia, while when dTdR (200 microM) was present, reactivation occurred in 32 of 37 ganglia (86%). Reactivation was minimal or did not occur after treatment with other nucleosides; specificity for dTdR would suggest the importance of dTdR nucleotide levels rather than more general nucleotide pool imbalance. Enhanced reactivation by dTdR was dose dependent and was blocked by acyclovir. While some degree of inhibition of TK- HSV by acyclovir may be expected, the complete block of dTdR-enhanced reactivation was unexpected. This result may suggest that HSV is particularly vulnerable during initial reactivation events. The mechanism of dTdR-enhanced reactivation of TK- HSV was further evaluated during in vivo infection by TK- HSV. For mice infected with TK- HSV, virus was undetectable in ganglia 3 days later. However, for mice infected with TK- HSV and treated with dTdR, virus was readily detected (2.8 x 10(3) PFU per ganglion). This result suggested that in vivo treatment with dTdR enhanced replication of TK- HSV in ganglion neurons. In turn, this suggests that in latently infected ganglia, dTdR-enhanced reactivation of TK- HSV occurred as a result of viral replication in neurons following initial reactivation events.
Full Text
The Full Text of this article is available as a PDF (684.6 KB).
Selected References
These references are in PubMed. This may not be the complete list of references from this article.
- Arnér E. S., Spasokoukotskaja T., Eriksson S. Selective assays for thymidine kinase 1 and 2 and deoxycytidine kinase and their activities in extracts from human cells and tissues. Biochem Biophys Res Commun. 1992 Oct 30;188(2):712–718. doi: 10.1016/0006-291x(92)91114-6. [DOI] [PubMed] [Google Scholar]
- Arnér E. S., Valentin A., Eriksson S. Thymidine and 3'-azido-3'-deoxythymidine metabolism in human peripheral blood lymphocytes and monocyte-derived macrophages. A study of both anabolic and catabolic pathways. J Biol Chem. 1992 Jun 5;267(16):10968–10975. [PubMed] [Google Scholar]
- Belt J. A., Marina N. M., Phelps D. A., Crawford C. R. Nucleoside transport in normal and neoplastic cells. Adv Enzyme Regul. 1993;33:235–252. doi: 10.1016/0065-2571(93)90021-5. [DOI] [PubMed] [Google Scholar]
- Bloom D. C., Devi-Rao G. B., Hill J. M., Stevens J. G., Wagner E. K. Molecular analysis of herpes simplex virus type 1 during epinephrine-induced reactivation of latently infected rabbits in vivo. J Virol. 1994 Mar;68(3):1283–1292. doi: 10.1128/jvi.68.3.1283-1292.1994. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Blumenreich M. S., Woodcock T. M., Andreeff M., Hiddemann W., Chou T. C., Vale K., O'Hehir M., Clarkson B. D., Young C. W. Effect of very high-dose thymidine infusions on leukemia and lymphoma patients. Cancer Res. 1984 May;44(5):2203–2207. [PubMed] [Google Scholar]
- Coen D. M., Fleming H. E., Jr, Leslie L. K., Retondo M. J. Sensitivity of arabinosyladenine-resistant mutants of herpes simplex virus to other antiviral drugs and mapping of drug hypersensitivity mutations to the DNA polymerase locus. J Virol. 1985 Feb;53(2):477–488. doi: 10.1128/jvi.53.2.477-488.1985. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Coen D. M., Kosz-Vnenchak M., Jacobson J. G., Leib D. A., Bogard C. L., Schaffer P. A., Tyler K. L., Knipe D. M. Thymidine kinase-negative herpes simplex virus mutants establish latency in mouse trigeminal ganglia but do not reactivate. Proc Natl Acad Sci U S A. 1989 Jun;86(12):4736–4740. doi: 10.1073/pnas.86.12.4736. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Cooper G. M. Phosphorylation of 5-bromodeoxycytidine in cells infected with herpes simplex virus. Proc Natl Acad Sci U S A. 1973 Dec;70(12):3788–3792. doi: 10.1073/pnas.70.12.3788. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Crawford C. R., Ng C. Y., Noel L. D., Belt J. A. Nucleoside transport in L1210 murine leukemia cells. Evidence for three transporters. J Biol Chem. 1990 Jun 15;265(17):9732–9736. [PubMed] [Google Scholar]
- Derse D., Cheng Y. C., Furman P. A., St Clair M. H., Elion G. B. Inhibition of purified human and herpes simplex virus-induced DNA polymerases by 9-(2-hydroxyethoxymethyl)guanine triphosphate. Effects on primer-template function. J Biol Chem. 1981 Nov 25;256(22):11447–11451. [PubMed] [Google Scholar]
- Efstathiou S., Kemp S., Darby G., Minson A. C. The role of herpes simplex virus type 1 thymidine kinase in pathogenesis. J Gen Virol. 1989 Apr;70(Pt 4):869–879. doi: 10.1099/0022-1317-70-4-869. [DOI] [PubMed] [Google Scholar]
- Eriksson S., Arnér E., Spasokoukotskaja T., Wang L., Karlsson A., Brosjö O., Gunvén P., Julusson G., Liliemark J. Properties and levels of deoxynucleoside kinases in normal and tumor cells; implications for chemotherapy. Adv Enzyme Regul. 1994;34:13–25. doi: 10.1016/0065-2571(94)90006-x. [DOI] [PubMed] [Google Scholar]
- Fife K. H., Crumpacker C. S., Mertz G. J., Hill E. L., Boone G. S. Recurrence and resistance patterns of herpes simplex virus following cessation of > or = 6 years of chronic suppression with acyclovir. Acyclovir Study Group. J Infect Dis. 1994 Jun;169(6):1338–1341. doi: 10.1093/infdis/169.6.1338. [DOI] [PubMed] [Google Scholar]
- Frost G. H., Rhee K., Thompson E. A., Jr Glucocorticoid regulation of thymidine kinase (Tk-1) expression in L929 cells. J Biol Chem. 1993 Mar 25;268(9):6748–6754. [PubMed] [Google Scholar]
- Furman P. A., Fyfe J. A., St Clair M. H., Weinhold K., Rideout J. L., Freeman G. A., Lehrman S. N., Bolognesi D. P., Broder S., Mitsuya H. Phosphorylation of 3'-azido-3'-deoxythymidine and selective interaction of the 5'-triphosphate with human immunodeficiency virus reverse transcriptase. Proc Natl Acad Sci U S A. 1986 Nov;83(21):8333–8337. doi: 10.1073/pnas.83.21.8333. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Gross M. K., Kainz M. S., Merrill G. F. The chicken thymidine kinase gene is transcriptionally repressed during terminal differentiation: the associated decline in TK mRNA cannot account fully for the disappearance of TK enzyme activity. Dev Biol. 1987 Aug;122(2):439–451. doi: 10.1016/0012-1606(87)90308-3. [DOI] [PubMed] [Google Scholar]
- Hengstschläger M., Knöfler M., Müllner E. W., Ogris E., Wintersberger E., Wawra E. Different regulation of thymidine kinase during the cell cycle of normal versus DNA tumor virus-transformed cells. J Biol Chem. 1994 May 13;269(19):13836–13842. [PubMed] [Google Scholar]
- Hwang C. B., Horsburgh B., Pelosi E., Roberts S., Digard P., Coen D. M. A net +1 frameshift permits synthesis of thymidine kinase from a drug-resistant herpes simplex virus mutant. Proc Natl Acad Sci U S A. 1994 Jun 7;91(12):5461–5465. doi: 10.1073/pnas.91.12.5461. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Jacobson J. G., Ruffner K. L., Kosz-Vnenchak M., Hwang C. B., Wobbe K. K., Knipe D. M., Coen D. M. Herpes simplex virus thymidine kinase and specific stages of latency in murine trigeminal ganglia. J Virol. 1993 Nov;67(11):6903–6908. doi: 10.1128/jvi.67.11.6903-6908.1993. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Jacobson J., Kramer M., Rozenberg F., Hu A., Coen D. M. Synergistic effects on ganglionic herpes simplex virus infections by mutations or drugs that inhibit the viral polymerase and thymidine kinase. Virology. 1995 Jan 10;206(1):263–268. doi: 10.1016/s0042-6822(95)80041-7. [DOI] [PubMed] [Google Scholar]
- Jamieson A. T., Gentry G. A., Subak-Sharpe J. H. Induction of both thymidine and deoxycytidine kinase activity by herpes viruses. J Gen Virol. 1974 Sep;24(3):465–480. doi: 10.1099/0022-1317-24-3-465. [DOI] [PubMed] [Google Scholar]
- Kosz-Vnenchak M., Jacobson J., Coen D. M., Knipe D. M. Evidence for a novel regulatory pathway for herpes simplex virus gene expression in trigeminal ganglion neurons. J Virol. 1993 Sep;67(9):5383–5393. doi: 10.1128/jvi.67.9.5383-5393.1993. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Leist T. P., Sandri-Goldin R. M., Stevens J. G. Latent infections in spinal ganglia with thymidine kinase-deficient herpes simplex virus. J Virol. 1989 Nov;63(11):4976–4978. doi: 10.1128/jvi.63.11.4976-4978.1989. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Lockshin A., Mendoza J. T., Giovanella B. C., Stehlin J. S., Jr Cytotoxic and biochemical effects of thymidine and 3-deazauridine on human tumor cells. Cancer Res. 1984 Jun;44(6):2534–2539. [PubMed] [Google Scholar]
- Lowy I., Caruso M., Goff S. P., Klatzmann D. Cellular thymidine kinase activity is required for the inhibition of HIV-1 replication by AZT in lymphocytes. Virology. 1994 Apr;200(1):271–275. doi: 10.1006/viro.1994.1185. [DOI] [PubMed] [Google Scholar]
- Margolis T. P., Sedarati F., Dobson A. T., Feldman L. T., Stevens J. G. Pathways of viral gene expression during acute neuronal infection with HSV-1. Virology. 1992 Jul;189(1):150–160. doi: 10.1016/0042-6822(92)90690-q. [DOI] [PubMed] [Google Scholar]
- Medina D. J., Tung P. P., Lerner-Tung M. B., Nelson C. J., Mellors J. W., Strair R. K. Sanctuary growth of human immunodeficiency virus in the presence of 3'-azido-3'-deoxythymidine. J Virol. 1995 Mar;69(3):1606–1611. doi: 10.1128/jvi.69.3.1606-1611.1995. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Meignier B., Longnecker R., Roizman B. In vivo behavior of genetically engineered herpes simplex viruses R7017 and R7020: construction and evaluation in rodents. J Infect Dis. 1988 Sep;158(3):602–614. doi: 10.1093/infdis/158.3.602. [DOI] [PubMed] [Google Scholar]
- Mertz G. J., Jones C. C., Mills J., Fife K. H., Lemon S. M., Stapleton J. T., Hill E. L., Davis L. G. Long-term acyclovir suppression of frequently recurring genital herpes simplex virus infection. A multicenter double-blind trial. JAMA. 1988 Jul 8;260(2):201–206. [PubMed] [Google Scholar]
- Meyerhans A., Vartanian J. P., Hultgren C., Plikat U., Karlsson A., Wang L., Eriksson S., Wain-Hobson S. Restriction and enhancement of human immunodeficiency virus type 1 replication by modulation of intracellular deoxynucleoside triphosphate pools. J Virol. 1994 Jan;68(1):535–540. doi: 10.1128/jvi.68.1.535-540.1994. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Perach M., Rubinek T., Hizi A. Resistance to nucleoside analogs of selective mutants of human immunodeficiency virus type 2 reverse transcriptase. J Virol. 1995 Jan;69(1):509–512. doi: 10.1128/jvi.69.1.509-512.1995. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Plagemann P. G., Wohlhueter R. M., Woffendin C. Nucleoside and nucleobase transport in animal cells. Biochim Biophys Acta. 1988 Oct 11;947(3):405–443. doi: 10.1016/0304-4157(88)90002-0. [DOI] [PubMed] [Google Scholar]
- Sawtell N. M., Thompson R. L. Herpes simplex virus type 1 latency-associated transcription unit promotes anatomical site-dependent establishment and reactivation from latency. J Virol. 1992 Apr;66(4):2157–2169. doi: 10.1128/jvi.66.4.2157-2169.1992. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Slobedman B., Efstathiou S., Simmons A. Quantitative analysis of herpes simplex virus DNA and transcriptional activity in ganglia of mice latently infected with wild-type and thymidine kinase-deficient viral strains. J Gen Virol. 1994 Sep;75(Pt 9):2469–2474. doi: 10.1099/0022-1317-75-9-2469. [DOI] [PubMed] [Google Scholar]
- Spivack J. G., Fareed M. U., Valyi-Nagy T., Nash T. C., O'Keefe J. S., Gesser R. M., McKie E. A., MacLean A. R., Fraser N. W., Brown S. M. Replication, establishment of latent infection, expression of the latency-associated transcripts and explant reactivation of herpes simplex virus type 1 gamma 34.5 mutants in a mouse eye model. J Gen Virol. 1995 Feb;76(Pt 2):321–332. doi: 10.1099/0022-1317-76-2-321. [DOI] [PubMed] [Google Scholar]
- Straus S. E., Croen K. D., Sawyer M. H., Freifeld A. G., Felser J. M., Dale J. K., Smith H. A., Hallahan C., Lehrman S. N. Acyclovir suppression of frequently recurring genital herpes. Efficacy and diminishing need during successive years of treatment. JAMA. 1988 Oct 21;260(15):2227–2230. [PubMed] [Google Scholar]
- Tenser R. B., Edris W. A., Gaydos A., Hay K. A. Secondary herpes simplex virus latent infection in transplanted ganglia. J Virol. 1994 Nov;68(11):7212–7220. doi: 10.1128/jvi.68.11.7212-7220.1994. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Tenser R. B., Hay K. A., Edris W. A. Latency-associated transcript but not reactivatable virus is present in sensory ganglion neurons after inoculation of thymidine kinase-negative mutants of herpes simplex virus type 1. J Virol. 1989 Jun;63(6):2861–2865. doi: 10.1128/jvi.63.6.2861-2865.1989. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Tenser R. B., Jones J. C., Ressel S. J., Fralish F. A. Thymidine plaque autoradiography of thymidine kinase-positive and thymidine kinase-negative herpesviruses. J Clin Microbiol. 1983 Jan;17(1):122–127. doi: 10.1128/jcm.17.1.122-127.1983. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Trousdale M. D., Steiner I., Spivack J. G., Deshmane S. L., Brown S. M., MacLean A. R., Subak-Sharpe J. H., Fraser N. W. In vivo and in vitro reactivation impairment of a herpes simplex virus type 1 latency-associated transcript variant in a rabbit eye model. J Virol. 1991 Dec;65(12):6989–6993. doi: 10.1128/jvi.65.12.6989-6993.1991. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Tung P. P., Summers W. C. Substrate specificity of Epstein-Barr virus thymidine kinase. Antimicrob Agents Chemother. 1994 Sep;38(9):2175–2179. doi: 10.1128/aac.38.9.2175. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Wilcox C. L., Crnic L. S., Pizer L. I. Replication, latent infection, and reactivation in neuronal culture with a herpes simplex virus thymidine kinase-negative mutant. Virology. 1992 Mar;187(1):348–352. doi: 10.1016/0042-6822(92)90326-k. [DOI] [PubMed] [Google Scholar]
- Xu Y. Z., Plunkett W. Regulation of thymidine kinase and thymidylate synthase in intact human lymphoblast CCRF-CEM cells. J Biol Chem. 1993 Oct 25;268(30):22363–22368. [PubMed] [Google Scholar]