Abstract
Using the severe combined immunodeficiency (SCID) mouse model, we investigated the requirement of the immune system for the development of scrapie after peripheral inoculation. A total of 33% of SCID mice, all but one immunologically reconstituted SCID mice (93%), and all CB17 control mice developed the disease. PrPres was detectable in the brains of all diseased animals and in the spleens of reconstituted SCID and CB17 control mice but not of the diseased non-immunologically reconstituted SCID mice. The immune system appears to be a primary target in the pathogenesis of scrapie, but direct spread to the central nervous system from the peritoneum via visceral nerve fibers can probably also occur.
Full Text
The Full Text of this article is available as a PDF (222.1 KB).
Selected References
These references are in PubMed. This may not be the complete list of references from this article.
- Bolton D. C., McKinley M. P., Prusiner S. B. Identification of a protein that purifies with the scrapie prion. Science. 1982 Dec 24;218(4579):1309–1311. doi: 10.1126/science.6815801. [DOI] [PubMed] [Google Scholar]
- Bosma G. C., Custer R. P., Bosma M. J. A severe combined immunodeficiency mutation in the mouse. Nature. 1983 Feb 10;301(5900):527–530. doi: 10.1038/301527a0. [DOI] [PubMed] [Google Scholar]
- Bosma M. J., Carroll A. M. The SCID mouse mutant: definition, characterization, and potential uses. Annu Rev Immunol. 1991;9:323–350. doi: 10.1146/annurev.iy.09.040191.001543. [DOI] [PubMed] [Google Scholar]
- Clarke M. C., Kimberlin R. H. Pathogenesis of mouse scrapie: distribution of agent in the pulp and stroma of infected spleens. Vet Microbiol. 1984 Jul;9(3):215–225. doi: 10.1016/0378-1135(84)90039-7. [DOI] [PubMed] [Google Scholar]
- Dickinson A. G., Fraser H., McConnell I., Outram G. W., Sales D. I., Taylor D. M. Extraneural competition between different scrapie agents leading to loss of infectivity. Nature. 1975 Feb 13;253(5492):556–556. doi: 10.1038/253556a0. [DOI] [PubMed] [Google Scholar]
- Dickinson A. G., Fraser H., Meikle V. M., Outram G. W. Competition between different scrapie agents in mice. Nat New Biol. 1972 Jun 21;237(77):244–245. doi: 10.1038/newbio237244a0. [DOI] [PubMed] [Google Scholar]
- Dickinson A. G., Fraser H., Outram G. W. Scrapie incubation time can exceed natural lifespan. Nature. 1975 Aug 28;256(5520):732–733. doi: 10.1038/256732a0. [DOI] [PubMed] [Google Scholar]
- Dickinson A. G., Meikle V. M., Fraser H. Identification of a gene which controls the incubation period of some strains of scrapie agent in mice. J Comp Pathol. 1968 Jul;78(3):293–299. doi: 10.1016/0021-9975(68)90005-4. [DOI] [PubMed] [Google Scholar]
- Doi S., Ito M., Shinagawa M., Sato G., Isomura H., Goto H. Western blot detection of scrapie-associated fibril protein in tissues outside the central nervous system from preclinical scrapie-infected mice. J Gen Virol. 1988 Apr;69(Pt 4):955–960. doi: 10.1099/0022-1317-69-4-955. [DOI] [PubMed] [Google Scholar]
- Eklund C. M., Kennedy R. C., Hadlow W. J. Pathogenesis of scrapie virus infection in the mouse. J Infect Dis. 1967 Feb;117(1):15–22. doi: 10.1093/infdis/117.1.15. [DOI] [PubMed] [Google Scholar]
- Fraser H., Dickinson A. G. Pathogenesis of scrapie in the mouse: the role of the spleen. Nature. 1970 May 2;226(5244):462–463. doi: 10.1038/226462a0. [DOI] [PubMed] [Google Scholar]
- Fraser H., Dickinson A. G. Studies of the lymphoreticular system in the pathogenesis of scrapie: the role of spleen and thymus. J Comp Pathol. 1978 Oct;88(4):563–573. doi: 10.1016/0021-9975(78)90010-5. [DOI] [PubMed] [Google Scholar]
- Fraser H., Farquhar C. F. Ionising radiation has no influence on scrapie incubation period in mice. Vet Microbiol. 1987 Mar;13(3):211–223. doi: 10.1016/0378-1135(87)90084-8. [DOI] [PubMed] [Google Scholar]
- Kapasi Z. F., Burton G. F., Shultz L. D., Tew J. G., Szakal A. K. Induction of functional follicular dendritic cell development in severe combined immunodeficiency mice. Influence of B and T cells. J Immunol. 1993 Apr 1;150(7):2648–2658. [PubMed] [Google Scholar]
- Kascsak R. J., Rubenstein R., Merz P. A., Carp R. I., Wisniewski H. M., Diringer H. Biochemical differences among scrapie-associated fibrils support the biological diversity of scrapie agents. J Gen Virol. 1985 Aug;66(Pt 8):1715–1722. doi: 10.1099/0022-1317-66-8-1715. [DOI] [PubMed] [Google Scholar]
- Kasper K. C., Stites D. P., Bowman K. A., Panitch H., Prusiner S. B. Immunological studies of scrapie infection. J Neuroimmunol. 1982 Nov;3(3):187–201. doi: 10.1016/0165-5728(82)90022-4. [DOI] [PubMed] [Google Scholar]
- Kimberlin R. H., Walker C. A. Competition between strains of scrapie depends on the blocking agent being infectious. Intervirology. 1985;23(2):74–81. doi: 10.1159/000149588. [DOI] [PubMed] [Google Scholar]
- Kimberlin R. H., Walker C. A. Incubation periods in six models of intraperitoneally injected scrapie depend mainly on the dynamics of agent replication within the nervous system and not the lymphoreticular system. J Gen Virol. 1988 Dec;69(Pt 12):2953–2960. doi: 10.1099/0022-1317-69-12-2953. [DOI] [PubMed] [Google Scholar]
- Kimberlin R. H., Walker C. A. Pathogenesis of mouse scrapie: dynamics of agent replication in spleen, spinal cord and brain after infection by different routes. J Comp Pathol. 1979 Oct;89(4):551–562. doi: 10.1016/0021-9975(79)90046-x. [DOI] [PubMed] [Google Scholar]
- Kimberlin R. H., Walker C. A. Pathogenesis of mouse scrapie: evidence for neural spread of infection to the CNS. J Gen Virol. 1980 Nov;51(Pt 1):183–187. doi: 10.1099/0022-1317-51-1-183. [DOI] [PubMed] [Google Scholar]
- Kimberlin R. H., Walker C. A. Pathogenesis of scrapie (strain 263K) in hamsters infected intracerebrally, intraperitoneally or intraocularly. J Gen Virol. 1986 Feb;67(Pt 2):255–263. doi: 10.1099/0022-1317-67-2-255. [DOI] [PubMed] [Google Scholar]
- Kimberlin R. H., Walker C. A. Pathogenesis of scrapie in mice after intragastric infection. Virus Res. 1989 Mar;12(3):213–220. doi: 10.1016/0168-1702(89)90040-3. [DOI] [PubMed] [Google Scholar]
- Kimberlin R. H., Walker C. A. Suppression of scrapie infection in mice by heteropolyanion 23, dextran sulfate, and some other polyanions. Antimicrob Agents Chemother. 1986 Sep;30(3):409–413. doi: 10.1128/aac.30.3.409. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Kingsbury D. T., Smeltzer D. A., Gibbs C. J., Jr, Gajdusek D. C. Evidence for normal cell-mediated immunity in scrapie-infected mice. Infect Immun. 1981 Jun;32(3):1176–1180. doi: 10.1128/iai.32.3.1176-1180.1981. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Kitamoto T., Mohri S., Tateishi J. Organ distribution of proteinase-resistant prion protein in humans and mice with Creutzfeldt-Jakob disease. J Gen Virol. 1989 Dec;70(Pt 12):3371–3379. doi: 10.1099/0022-1317-70-12-3371. [DOI] [PubMed] [Google Scholar]
- Kitamoto T., Muramoto T., Mohri S., Doh-Ura K., Tateishi J. Abnormal isoform of prion protein accumulates in follicular dendritic cells in mice with Creutzfeldt-Jakob disease. J Virol. 1991 Nov;65(11):6292–6295. doi: 10.1128/jvi.65.11.6292-6295.1991. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Kuroda Y., Gibbs C. J., Jr, Amyx H. L., Gajdusek D. C. Creutzfeldt-Jakob disease in mice: persistent viremia and preferential replication of virus in low-density lymphocytes. Infect Immun. 1983 Jul;41(1):154–161. doi: 10.1128/iai.41.1.154-161.1983. [DOI] [PMC free article] [PubMed] [Google Scholar]
- McBride P. A., Eikelenboom P., Kraal G., Fraser H., Bruce M. E. PrP protein is associated with follicular dendritic cells of spleens and lymph nodes in uninfected and scrapie-infected mice. J Pathol. 1992 Dec;168(4):413–418. doi: 10.1002/path.1711680412. [DOI] [PubMed] [Google Scholar]
- Muramoto T., Kitamoto T., Tateishi J., Goto I. The sequential development of abnormal prion protein accumulation in mice with Creutzfeldt-Jakob disease. Am J Pathol. 1992 Jun;140(6):1411–1420. [PMC free article] [PubMed] [Google Scholar]
- O'Rourke K. I., Huff T. P., Leathers C. W., Robinson M. M., Gorham J. R. SCID mouse spleen does not support scrapie agent replication. J Gen Virol. 1994 Jun;75(Pt 6):1511–1514. doi: 10.1099/0022-1317-75-6-1511. [DOI] [PubMed] [Google Scholar]
- Pocchiari M., Casaccia P., Ladogana A. Amphotericin B: a novel class of antiscrapie drugs. J Infect Dis. 1989 Nov;160(5):795–802. doi: 10.1093/infdis/160.5.795. [DOI] [PubMed] [Google Scholar]
- Prusiner S. B. Novel proteinaceous infectious particles cause scrapie. Science. 1982 Apr 9;216(4542):136–144. doi: 10.1126/science.6801762. [DOI] [PubMed] [Google Scholar]
- Rubenstein R., Merz P. A., Kascsak R. J., Scalici C. L., Papini M. C., Carp R. I., Kimberlin R. H. Scrapie-infected spleens: analysis of infectivity, scrapie-associated fibrils, and protease-resistant proteins. J Infect Dis. 1991 Jul;164(1):29–35. doi: 10.1093/infdis/164.1.29. [DOI] [PubMed] [Google Scholar]
- Wells G. A., Scott A. C., Johnson C. T., Gunning R. F., Hancock R. D., Jeffrey M., Dawson M., Bradley R. A novel progressive spongiform encephalopathy in cattle. Vet Rec. 1987 Oct 31;121(18):419–420. doi: 10.1136/vr.121.18.419. [DOI] [PubMed] [Google Scholar]