Skip to main content
The American Journal of Pathology logoLink to The American Journal of Pathology
. 1987 Jan;126(1):171–182.

The role of intraalveolar fibrosis in the process of pulmonary structural remodeling in patients with diffuse alveolar damage.

Y Fukuda, M Ishizaki, Y Masuda, G Kimura, O Kawanami, Y Masugi
PMCID: PMC1899540  PMID: 3812636

Abstract

For a study of the processes and mechanisms of pulmonary structural remodeling in fibrotic lungs and metaplastic squamous epithelial cells in fibrotic alveoli, immunohistochemical, ultrastructural, and light-microscopic morphometric observations were made of the lungs in acute and proliferative stages of diffuse alveolar damage (n = 40) obtained from biopsies and autopsies. Morphometry showed that intraalveolar fibrosis developed in the early proliferative stage and was more prominent than interstitial fibrosis. In the early proliferative stage, activated myofibroblasts migrated into intraalveolar spaces through gaps in the epithelial basement membrane. They then attached to the luminal side of epithelial basement membrane and produced intraalveolar fibrosis and coalescence of alveolar walls. This intraalveolar fibrosis was the essential factor in the remodeled lungs. Albumin, fibrinogen, immunoglobulins, and surfactant apoprotein were present throughout the hyaline membrane. Fibronectin was not found in hyaline membrane of the lesions in early acute stage but was demonstrated in later stages in outer layers of hyaline membranes and in the areas of intraalveolar fibrosis. Fibronectin may be responsible for the migration and proliferation of myofibroblasts in intraalveolar spaces. Metaplastic single-layered and stratified squamous epithelial cells were keratin-positive and surfactant apoprotein-negative. These metaplastic epithelial cells were frequently found in the alveoli with minimal Type II epithelial cell proliferation and in the grossly scarred alveoli.

Full text

PDF
171

Images in this article

Selected References

These references are in PubMed. This may not be the complete list of references from this article.

  1. AVERY M. E., MEAD J. Surface properties in relation to atelectasis and hyaline membrane disease. AMA J Dis Child. 1959 May;97(5 Pt 1):517–523. doi: 10.1001/archpedi.1959.02070010519001. [DOI] [PubMed] [Google Scholar]
  2. Adams F. H., Fujiwara T., Emmanouilides G. C., Räihä N. Lung phospholipids of human fetuses and infants with and without hyaline membrane disease. J Pediatr. 1970 Nov;77(5):833–841. doi: 10.1016/s0022-3476(70)80244-x. [DOI] [PubMed] [Google Scholar]
  3. Anderson W. R., Strickland M. B., Tsai S. H., Haglin J. J. Light microscopic and ultrastructural study of the adverse effects of oxygen therapy on the neonate lung. Am J Pathol. 1973 Nov;73(2):327–348. [PMC free article] [PubMed] [Google Scholar]
  4. Bachofen M., Weibel E. R. Alterations of the gas exchange apparatus in adult respiratory insufficiency associated with septicemia. Am Rev Respir Dis. 1977 Oct;116(4):589–615. doi: 10.1164/arrd.1977.116.4.589. [DOI] [PubMed] [Google Scholar]
  5. Bachofen M., Weibel E. R. Basic pattern of tissue repair in human lungs following unspecific injury. Chest. 1974 Apr;65(Suppl):14S–19S. doi: 10.1378/chest.65.4_supplement.14s. [DOI] [PubMed] [Google Scholar]
  6. Balis J. U., Paterson J. F., Paciga J. E., Haller E. M., Shelley S. A. Distribution and subcellular localization of surfactant-associated glycoproteins in human lung. Lab Invest. 1985 Jun;52(6):657–669. [PubMed] [Google Scholar]
  7. Basset F., Ferrans V. J., Soler P., Takemura T., Fukuda Y., Crystal R. G. Intraluminal fibrosis in interstitial lung disorders. Am J Pathol. 1986 Mar;122(3):443–461. [PMC free article] [PubMed] [Google Scholar]
  8. Birke G., Liljedahl S. O., Plantin L. O. Distribution and losses of plasma proteins during the early stage of severe burns. Ann N Y Acad Sci. 1968 Aug 14;150(3):895–904. doi: 10.1111/j.1749-6632.1968.tb14739.x. [DOI] [PubMed] [Google Scholar]
  9. Bitterman P. B., Rennard S. I., Adelberg S., Crystal R. G. Role of fibronectin as a growth factor for fibroblasts. J Cell Biol. 1983 Dec;97(6):1925–1932. doi: 10.1083/jcb.97.6.1925. [DOI] [PMC free article] [PubMed] [Google Scholar]
  10. Crystal R. G., Bitterman P. B., Rennard S. I., Hance A. J., Keogh B. A. Interstitial lung diseases of unknown cause. Disorders characterized by chronic inflammation of the lower respiratory tract (first of two parts). N Engl J Med. 1984 Jan 19;310(3):154–166. doi: 10.1056/NEJM198401193100304. [DOI] [PubMed] [Google Scholar]
  11. Crystal R. G., Bitterman P. B., Rennard S. I., Hance A. J., Keogh B. A. Interstitial lung diseases of unknown cause. Disorders characterized by chronic inflammation of the lower respiratory tract. N Engl J Med. 1984 Jan 26;310(4):235–244. doi: 10.1056/NEJM198401263100406. [DOI] [PubMed] [Google Scholar]
  12. Engvall E., Ruoslahti E. Binding of soluble form of fibroblast surface protein, fibronectin, to collagen. Int J Cancer. 1977 Jul 15;20(1):1–5. doi: 10.1002/ijc.2910200102. [DOI] [PubMed] [Google Scholar]
  13. Fein A., Grossman R. F., Jones J. G., Overland E., Pitts L., Murray J. F., Staub N. C. The value of edema fluid protein measurement in patients with pulmonary edema. Am J Med. 1979 Jul;67(1):32–38. doi: 10.1016/0002-9343(79)90066-4. [DOI] [PubMed] [Google Scholar]
  14. Fujiwara T., Maeta H., Chida S., Morita T., Watabe Y., Abe T. Artificial surfactant therapy in hyaline-membrane disease. Lancet. 1980 Jan 12;1(8159):55–59. doi: 10.1016/s0140-6736(80)90489-4. [DOI] [PubMed] [Google Scholar]
  15. Fukuda Y., Ferrans V. J., Schoenberger C. I., Rennard S. I., Crystal R. G. Patterns of pulmonary structural remodeling after experimental paraquat toxicity. The morphogenesis of intraalveolar fibrosis. Am J Pathol. 1985 Mar;118(3):452–475. [PMC free article] [PubMed] [Google Scholar]
  16. Gould V. E., Tosco R., Wheelis R. F., Gould N. S., Kapanci Y. Oxygen pneumonitis in man. Ultrastructural observations on the development of alveolar lesions. Lab Invest. 1972 May;26(5):499–508. [PubMed] [Google Scholar]
  17. Graham R. C., Jr, Karnovsky M. J. The early stages of absorption of injected horseradish peroxidase in the proximal tubules of mouse kidney: ultrastructural cytochemistry by a new technique. J Histochem Cytochem. 1966 Apr;14(4):291–302. doi: 10.1177/14.4.291. [DOI] [PubMed] [Google Scholar]
  18. Kajikawa K., Yamaguchi T., Katsuda S., Miwa A. An improved electron stain for elastic fibers using tannic acid. J Electron Microsc (Tokyo) 1975;24(4):287–289. [PubMed] [Google Scholar]
  19. Kapanci Y., Tosco R., Eggermann J., Gould V. E. Oxygen pneumonitis in man., Light- and electron-microscopic morphometric studies. Chest. 1972 Aug;62(2):162–169. doi: 10.1378/chest.62.2.162. [DOI] [PubMed] [Google Scholar]
  20. Kapanci Y., Weibel E. R., Kaplan H. P., Robinson F. R. Pathogenesis and reversibility of the pulmonary lesions of oxygen toxicity in monkeys. II. Ultrastructural and morphometric studies. Lab Invest. 1969 Jan;20(1):101–118. [PubMed] [Google Scholar]
  21. Katzenstein A. L., Bloor C. M., Leibow A. A. Diffuse alveolar damage--the role of oxygen, shock, and related factors. A review. Am J Pathol. 1976 Oct;85(1):209–228. [PMC free article] [PubMed] [Google Scholar]
  22. Kawanami O., Ferrans V. J., Crystal R. G. Structure of alveolar epithelial cells in patients with fibrotic lung disorders. Lab Invest. 1982 Jan;46(1):39–53. [PubMed] [Google Scholar]
  23. Kistler G. S., Caldwell P. R., Weibel E. R. Development of fine structural damage to alveolar and capillary lining cells in oxygen-poisoned rat lungs. J Cell Biol. 1967 Mar;32(3):605–628. doi: 10.1083/jcb.32.3.605. [DOI] [PMC free article] [PubMed] [Google Scholar]
  24. Klebe R. J. Isolation of a collagen-dependent cell attachment factor. Nature. 1974 Jul 19;250(463):248–251. doi: 10.1038/250248a0. [DOI] [PubMed] [Google Scholar]
  25. Kuhn C., 3rd, Kuo T. T. Cytoplasmic hyalin in asbestosis. A reaction of injured alveolar epithelium. Arch Pathol. 1973 Mar;95(3):190–194. [PubMed] [Google Scholar]
  26. Kuroki Y., Fukada Y., Takahashi H., Akino T. Monoclonal antibodies against human pulmonary surfactant apoproteins: specificity and application in immunoassay. Biochim Biophys Acta. 1985 Sep 11;836(2):201–209. [PubMed] [Google Scholar]
  27. Mapp P. I., Mayston V. J., Revell P. A. Re: Apparent staining of mast cells for fibronectin with a peroxidase-antiperoxidase method on formalin fixed sections. J Immunol Methods. 1984 Jun 8;71(1):107–110. doi: 10.1016/0022-1759(84)90210-2. [DOI] [PubMed] [Google Scholar]
  28. Nash G., Blennerhassett J. B., Pontoppidan H. Pulmonary lesions associated with oxygen therapy and artifical ventilation. N Engl J Med. 1967 Feb 16;276(7):368–374. doi: 10.1056/NEJM196702162760702. [DOI] [PubMed] [Google Scholar]
  29. Nash G., Foley F. D., Langlinais P. C. Pulmonary interstitial edema and hyaline membranes in adult burn patients. Electron microscopic observations. Hum Pathol. 1974 Mar;5(2):149–160. doi: 10.1016/s0046-8177(74)80062-6. [DOI] [PubMed] [Google Scholar]
  30. Northway W. H., Jr, Rosan R. C., Porter D. Y. Pulmonary disease following respirator therapy of hyaline-membrane disease. Bronchopulmonary dysplasia. N Engl J Med. 1967 Feb 16;276(7):357–368. doi: 10.1056/NEJM196702162760701. [DOI] [PubMed] [Google Scholar]
  31. Pratt P. C., Vollmer R. T., Shelburne J. D., Crapo J. D. Pulmonary morphology in a multihospital collaborative extracorporeal membrane oxygenation project. I. Light microscopy. Am J Pathol. 1979 Apr;95(1):191–214. [PMC free article] [PubMed] [Google Scholar]
  32. Rennard S. I., Hunninghake G. W., Bitterman P. B., Crystal R. G. Production of fibronectin by the human alveolar macrophage: mechanism for the recruitment of fibroblasts to sites of tissue injury in interstitial lung diseases. Proc Natl Acad Sci U S A. 1981 Nov;78(11):7147–7151. doi: 10.1073/pnas.78.11.7147. [DOI] [PMC free article] [PubMed] [Google Scholar]
  33. Schlegel R., Banks-Schlegel S., Pinkus G. S. Immunohistochemical localization of keratin in normal human tissues. Lab Invest. 1980 Jan;42(1):91–96. [PubMed] [Google Scholar]
  34. Schoenberger C. I., Rennard S. I., Bitterman P. B., Fukuda Y., Ferrans V. J., Crystal R. G. Paraquat-induced pulmonary fibrosis. Role of the alveolitis in modulating the development of fibrosis. Am Rev Respir Dis. 1984 Jan;129(1):168–173. doi: 10.1164/arrd.1984.129.1.168. [DOI] [PubMed] [Google Scholar]
  35. Sevitt S. Diffuse and focal oxygen pneumonitis. A preliminary report on the threshold of pulmonary oxygen toxicity in man. J Clin Pathol. 1974 Jan;27(1):21–30. doi: 10.1136/jcp.27.1.21. [DOI] [PMC free article] [PubMed] [Google Scholar]
  36. Soloway H. B., Castillo Y., Martin A. M., Jr Adult hyaline membrane disese: relationship to oxygen therapy. Ann Surg. 1968 Dec;168(6):937–945. doi: 10.1097/00000658-196812000-00001. [DOI] [PMC free article] [PubMed] [Google Scholar]
  37. Warnock M. L., Press M., Churg A. Further observations on cytoplasmic hyaline in the lung. Hum Pathol. 1980 Jan;11(1):59–65. doi: 10.1016/s0046-8177(80)80106-7. [DOI] [PubMed] [Google Scholar]
  38. Zapol W. M., Trelstad R. L., Coffey J. W., Tsai I., Salvador R. A. Pulmonary fibrosis in severe acute respiratory failure. Am Rev Respir Dis. 1979 Apr;119(4):547–554. doi: 10.1164/arrd.1979.119.4.547. [DOI] [PubMed] [Google Scholar]

Articles from The American Journal of Pathology are provided here courtesy of American Society for Investigative Pathology

RESOURCES