Skip to main content
The American Journal of Pathology logoLink to The American Journal of Pathology
. 1987 Jan;126(1):25–32.

Modulation of carbohydrate residues in regenerative nodules and neoplasms of canine and feline pancreas.

E Skutelsky, J Alroy, A A Ucci, J L Carpenter, F M Moore
PMCID: PMC1899554  PMID: 2433947

Abstract

The glycoconjugates of regenerative acinar cells, acinic cell carcinomas, islet cell tumors, and normal canine and feline pancreas were studied. The authors used biotinylated lectins as probes and avidin-biotin-peroxidase complex as visualant to identify and to compare the distribution of carbohydrate residues on paraffin sections from 74 cases. The findings demonstrate a difference in the staining pattern between normal acinar, islet, and ductal cells in each species and small differences in the staining pattern between the species. It is shown that in nodules of regenerative acinar cells and acinic cell carcinomas there is an increased staining intensity with Concanavalia ensiformis agglutinin, Ricinus communis agglutinin-I, and wheat germ agglutinin. The pattern of lectin staining in regenerative cells and malignant acinar cells reflects the degree of cellular differentiation. Intensive apical staining characterizes a higher degree of differentiation, while dispersed staining is a major feature of poor differentiation. These findings suggest that malignant transformation of pancreatic acinar cells is associated with enhanced expression of glycoconjugates, which resembles that seen in a normal immature acinar cells.

Full text

PDF
25

Images in this article

Selected References

These references are in PubMed. This may not be the complete list of references from this article.

  1. Alroy J., Banner B. F., Pauli B. U., Leav I. Alterations of intercellular junctions in acinic cell carcinoma of the canine pancreas. Virchows Arch B Cell Pathol. 1978 Jul 14;28(1):21–30. doi: 10.1007/BF02889053. [DOI] [PubMed] [Google Scholar]
  2. Alroy J., Orgad U., Ucci A. A., Pereira M. E. Identification of glycoprotein storage diseases by lectins: a new diagnostic method. J Histochem Cytochem. 1984 Dec;32(12):1280–1284. doi: 10.1177/32.12.6501863. [DOI] [PubMed] [Google Scholar]
  3. Baenziger J. U., Fiete D. Structural determinants of concanavalin A specificity for oligosaccharides. J Biol Chem. 1979 Apr 10;254(7):2400–2407. [PubMed] [Google Scholar]
  4. Banner B. F., Alroy J., Kipnis R. M. Acinar cell carcinoma of the pancreas in a cat. Vet Pathol. 1979 Sep;16(5):543–547. doi: 10.1177/030098587901600506. [DOI] [PubMed] [Google Scholar]
  5. Banner B. F., Alroy J., Pauli B. U., Carpenter J. L. An ultrastructural study of acinic cell carcinomas of the canine pancreas. Am J Pathol. 1978 Oct;93(1):165–182. [PMC free article] [PubMed] [Google Scholar]
  6. Capen C. C., Martin S. L. Hyperinsulinism in dogs with neoplasia of the pancreatic islets. A clinical, pathologic, and ultrastructural study. Pathol Vet. 1969;6(4):309–341. doi: 10.1177/030098586900600402. [DOI] [PubMed] [Google Scholar]
  7. Debray H., Decout D., Strecker G., Spik G., Montreuil J. Specificity of twelve lectins towards oligosaccharides and glycopeptides related to N-glycosylproteins. Eur J Biochem. 1981 Jun;117(1):41–55. doi: 10.1111/j.1432-1033.1981.tb06300.x. [DOI] [PubMed] [Google Scholar]
  8. Feizi T., Gooi H. C., Childs R. A., Picard J. K., Uemura K., Loomes L. M., Thorpe S. J., Hounsell E. F. Tumour-associated and differentiation antigens on the carbohydrate moieties of mucin-type glycoproteins. Biochem Soc Trans. 1984 Aug;12(4):591–596. doi: 10.1042/bst0120591. [DOI] [PubMed] [Google Scholar]
  9. Goldstein I. J., Hayes C. E. The lectins: carbohydrate-binding proteins of plants and animals. Adv Carbohydr Chem Biochem. 1978;35:127–340. doi: 10.1016/s0065-2318(08)60220-6. [DOI] [PubMed] [Google Scholar]
  10. Jamieson J. D., Ingber D. E., Muresan V., Hull B. E., Sarras M. P., Jr, Maylié-Pfenninger M. F., Iwanij V. Cell surface properties of normal, differentiating, and neoplastic pancreatic acinar cells. Cancer. 1981 Mar 15;47(6 Suppl):1516–1527. doi: 10.1002/1097-0142(19810315)47:6+<1516::aid-cncr2820471413>3.0.co;2-9. [DOI] [PubMed] [Google Scholar]
  11. Kircher C. H., Nielsen S. W. Tumours of the pancreas. Bull World Health Organ. 1976;53(2-3):195–202. [PMC free article] [PubMed] [Google Scholar]
  12. Kornfeld R., Kornfeld S. Assembly of asparagine-linked oligosaccharides. Annu Rev Biochem. 1985;54:631–664. doi: 10.1146/annurev.bi.54.070185.003215. [DOI] [PubMed] [Google Scholar]
  13. Magnani J. L., Nilsson B., Brockhaus M., Zopf D., Steplewski Z., Koprowski H., Ginsburg V. A monoclonal antibody-defined antigen associated with gastrointestinal cancer is a ganglioside containing sialylated lacto-N-fucopentaose II. J Biol Chem. 1982 Dec 10;257(23):14365–14369. [PubMed] [Google Scholar]
  14. Maylié-Pfenninger M. F., Jamieson J. D. Development of cell surface saccharides on embryonic pancreatic cells. J Cell Biol. 1980 Jul;86(1):96–103. doi: 10.1083/jcb.86.1.96. [DOI] [PMC free article] [PubMed] [Google Scholar]
  15. Maylié-Pfenninger M. F., Jamieson J. D. Distribution of cell surface saccharides on pancreatic cells. II. Lectin-labeling patterns on mature guinea pig and rat pancreatic cells. J Cell Biol. 1979 Jan;80(1):77–95. doi: 10.1083/jcb.80.1.77. [DOI] [PMC free article] [PubMed] [Google Scholar]
  16. Monsigny M., Roche A. C., Sene C., Maget-Dana R., Delmotte F. Sugar-lectin interactions: how does wheat-germ agglutinin bind sialoglycoconjugates? Eur J Biochem. 1980 Feb;104(1):147–153. doi: 10.1111/j.1432-1033.1980.tb04410.x. [DOI] [PubMed] [Google Scholar]
  17. Morré D. J., Kartenbeck J., Franke W. W. Membrane flow and intercoversions among endomembranes. Biochim Biophys Acta. 1979 Apr 23;559(1):71–52. doi: 10.1016/0304-4157(79)90008-x. [DOI] [PubMed] [Google Scholar]
  18. Muresan V., Sarras M. P., Jr, Jamieson J. D. Distribution of sialoglycoconjugates on acinar cells of the mammalian pancreas. J Histochem Cytochem. 1982 Sep;30(9):947–955. doi: 10.1177/30.9.6752268. [DOI] [PubMed] [Google Scholar]
  19. Pisam M., Ripoche P. Redistribution of surface macromolecules in dissociated epithelial cells. J Cell Biol. 1976 Dec;71(3):907–920. doi: 10.1083/jcb.71.3.907. [DOI] [PMC free article] [PubMed] [Google Scholar]
  20. Schaumburg-Lever G., Alroy J., Ucci A., Lever W. F. Distribution of carbohydrate residues in normal skin. Arch Dermatol Res. 1984;276(4):216–223. doi: 10.1007/BF00414231. [DOI] [PubMed] [Google Scholar]
  21. Skutelsky E., Farquhar M. G. Variations in distribution of con A receptor sites and anionic groups during red blood cell differentiation in the rat. J Cell Biol. 1976 Oct;71(1):218–231. doi: 10.1083/jcb.71.1.218. [DOI] [PMC free article] [PubMed] [Google Scholar]
  22. Streit W. J., Schulte B. A., Balentine D. J., Spicer S. S. Histochemical localization of galactose-containing glycoconjugates in sensory neurons and their processes in the central and peripheral nervous system of the rat. J Histochem Cytochem. 1985 Oct;33(10):1042–1052. doi: 10.1177/33.10.4045182. [DOI] [PubMed] [Google Scholar]
  23. Weinstein R. S., Merk F. B., Alroy J. The structure and function of intercellular junctions in cancer. Adv Cancer Res. 1976;23:23–89. doi: 10.1016/s0065-230x(08)60543-6. [DOI] [PubMed] [Google Scholar]
  24. Yogeeswaran G., Salk P. L. Metastatic potential is positively correlated with cell surface sialylation of cultured murine tumor cell lines. Science. 1981 Jun 26;212(4502):1514–1516. doi: 10.1126/science.7233237. [DOI] [PubMed] [Google Scholar]

Articles from The American Journal of Pathology are provided here courtesy of American Society for Investigative Pathology

RESOURCES