Skip to main content
The American Journal of Pathology logoLink to The American Journal of Pathology
. 1987 Jan;126(1):92–102.

Changes in ultrastructure and Ca2+ distribution in the isolated working rabbit heart after ischemia. A time-related study.

M Borgers, L G Shu, R Xhonneux, F Thoné, P Van Overloop
PMCID: PMC1899558  PMID: 3812639

Abstract

Ultrastructural changes in cardiac muscle of isolated working rabbit hearts after various periods of ischemia are described and compared with distributional changes in calcium. The effects of reperfusion on these structural parameters were also investigated. The purposes of this study were to relate the role of calcium in the degeneration of cardiac muscle; to determine whether Ca2+ localizations could serve as additional criteria to determine more closely the point of no return; and to investigate the contributory role of reoxygenation to the development of myocardial damage. This study shows the existence of topographic differences in the tolerance to ischemia in the mid area, subendocardium, and subepicardium; that the sequestration of Ca2+ by mitochondria is an energy-requiring (active) process that occurs only during reperfusion; the loss of the sarcolemma's ability to bind Ca2+ during ischemia to coincide with increased Ca2+ entry during postischemic reperfusion (this Ca2+ is scavenged by mitochondria as long as sufficient energy remains available; these changes are interpreted as being at the edge of irreversibility); and the lack of additional damage and and lack of Ca2+ accumulation in mitochondria during reperfusion in cells that are damaged to such an extent that mitochondria possess flocculent densities already at the end of the ischemic insult.

Full text

PDF
92

Images in this article

Selected References

These references are in PubMed. This may not be the complete list of references from this article.

  1. Borgers M., Piper H. M. Calcium-shifts in anoxic cardiac myocytes. A cytochemical study. J Mol Cell Cardiol. 1986 Apr;18(4):439–448. doi: 10.1016/s0022-2828(86)80906-3. [DOI] [PubMed] [Google Scholar]
  2. Borgers M., Thone F., Verheyen A., Ter Keurs H. E. Localization of calcium in skeletal and cardiac muscle. Histochem J. 1984 Mar;16(3):295–309. doi: 10.1007/BF01003613. [DOI] [PubMed] [Google Scholar]
  3. Borgers M., Thoné F., Ver Donck L. Sarcolemma-bound calcium. Its importance for cell viability. Basic Res Cardiol. 1985;80 (Suppl 1):30–35. [PubMed] [Google Scholar]
  4. Boskey A. L., Posner A. S. Optimal conditions for Ca-acidic phospholipid-PO4 formation. Calcif Tissue Int. 1982;34 (Suppl 2):S1–S7. [PubMed] [Google Scholar]
  5. Flameng W., Daenen W., Borgers M., Thone F., Xhonneux R., van de Water A., van Belle H. Cardioprotective effects of lidoflazine during 1-hour normothermic global ischemia. Circulation. 1981 Oct;64(4):796–807. doi: 10.1161/01.cir.64.4.796. [DOI] [PubMed] [Google Scholar]
  6. Flameng W., Xhonneux R., Van Belle H., Borgers M., Van de Water A., Wouters L., Wijnants J., Thoné F., Van Daele P., Janssen P. A. Cardioprotective effects of mioflazine during 1 h normothermic global ischaemia in the canine heart. Cardiovasc Res. 1984 Sep;18(9):528–537. doi: 10.1093/cvr/18.9.528. [DOI] [PubMed] [Google Scholar]
  7. Ganote C. E. Contraction band necrosis and irreversible myocardial injury. J Mol Cell Cardiol. 1983 Feb;15(2):67–73. doi: 10.1016/0022-2828(83)90283-3. [DOI] [PubMed] [Google Scholar]
  8. Hearse D. J., Humphrey S. M., Bullock G. R. The oxygen paradox and the calcium paradox: two facets of the same problem? J Mol Cell Cardiol. 1978 Jul;10(7):641–668. doi: 10.1016/s0022-2828(78)80004-2. [DOI] [PubMed] [Google Scholar]
  9. Jennings R. B., Ganote C. E. Structural changes in myocardium during acute ischemia. Circ Res. 1974 Sep;35 (Suppl 3):156–172. [PubMed] [Google Scholar]
  10. Jennings R. B., Reimer K. A. Lethal myocardial ischemic injury. Am J Pathol. 1981 Feb;102(2):241–255. [PMC free article] [PubMed] [Google Scholar]
  11. Jennings R. B., Schaper J., Hill M. L., Steenbergen C., Jr, Reimer K. A. Effect of reperfusion late in the phase of reversible ischemic injury. Changes in cell volume, electrolytes, metabolites, and ultrastructure. Circ Res. 1985 Feb;56(2):262–278. doi: 10.1161/01.res.56.2.262. [DOI] [PubMed] [Google Scholar]
  12. Kloner R. A., Ellis S. G., Lange R., Braunwald E. Studies of experimental coronary artery reperfusion. Effects on infarct size, myocardial function, biochemistry, ultrastructure and microvascular damage. Circulation. 1983 Aug;68(2 Pt 2):I8–15. [PubMed] [Google Scholar]
  13. Langer G. A., Frank J. S., Philipson K. D. Ultrastructure and calcium exchange of the sarcolemma, sarcoplasmic reticulum and mitochondria of the myocardium. Pharmacol Ther. 1982;16(3):331–376. doi: 10.1016/0163-7258(82)90006-7. [DOI] [PubMed] [Google Scholar]
  14. Langer G. A. The effect of pH on cellular and membrane calcium binding and contraction of myocardium. A possible role for sarcolemmal phospholipid in EC coupling. Circ Res. 1985 Sep;57(3):374–382. doi: 10.1161/01.res.57.3.374. [DOI] [PubMed] [Google Scholar]
  15. Lüllmann H., Peters T. Plasmalemmal calcium in cardiac excitation-contraction coupling. Clin Exp Pharmacol Physiol. 1977 Jan-Feb;4(1):49–57. doi: 10.1111/j.1440-1681.1977.tb02377.x. [DOI] [PubMed] [Google Scholar]
  16. Nakanishi T., Nishioka K., Jarmakani J. M. Mechanism of tissue Ca2+ gain during reoxygenation after hypoxia in rabbit myocardium. Am J Physiol. 1982 Mar;242(3):H437–H449. doi: 10.1152/ajpheart.1982.242.3.H437. [DOI] [PubMed] [Google Scholar]
  17. Philipson K. D., Bers D. M., Nishimoto A. Y. The role of phospholipids in the Ca2+ binding of isolated cardiac sarcolemma. J Mol Cell Cardiol. 1980 Nov;12(11):1159–1173. doi: 10.1016/0022-2828(80)90063-2. [DOI] [PubMed] [Google Scholar]
  18. Shen A. C., Jennings R. B. Kinetics of calcium accumulation in acute myocardial ischemic injury. Am J Pathol. 1972 Jun;67(3):441–452. [PMC free article] [PubMed] [Google Scholar]
  19. Shen A. C., Jennings R. B. Myocardial calcium and magnesium in acute ischemic injury. Am J Pathol. 1972 Jun;67(3):417–440. [PMC free article] [PubMed] [Google Scholar]
  20. Van Belle H., Xhonneux R., Flameng W., Wynants J. Oral pretreatment with mioflazine completely changes the pattern and remarkably prolongs the accumulation of nucleosides in ischemic and reperfused myocardium. Basic Res Cardiol. 1986 Jul-Aug;81(4):407–416. doi: 10.1007/BF01907461. [DOI] [PubMed] [Google Scholar]
  21. Wick S. M., Hepler P. K. Selective localization of intracellular Ca2+ with potassium antimonate. J Histochem Cytochem. 1982 Nov;30(11):1190–1204. doi: 10.1177/30.11.6815264. [DOI] [PubMed] [Google Scholar]

Articles from The American Journal of Pathology are provided here courtesy of American Society for Investigative Pathology

RESOURCES