Skip to main content
The American Journal of Pathology logoLink to The American Journal of Pathology
. 1987 Feb;126(2):350–357.

Mechanism of Escherichia coli alpha-hemolysin-induced injury to isolated renal tubular cells.

W F Keane, R Welch, G Gekker, P K Peterson
PMCID: PMC1899561  PMID: 3030115

Abstract

Alpha-hemolysin (AH) is a 110,000-dalton protein secreted extracellularly by certain Escherichia coli. This protein is an acknowledged virulence factor for E coli and recently has been implicated as an important determinant in the pathogenesis of E coli pyelonephritis. Recombinant engineered strains of E coli were used that varied only in their ability to secrete AH extracellularly. The effect of AH on vital dye exclusion, oxygen consumption rate (QO2) adenosine triphosphate (ATP) levels, superoxide (O2-) and hydrogen peroxide (H2O2) production in preparations of isolated rat cortical renal tubular cells (RTCs) was assessed. Approximately 5-10 pg of AH dramatically stimulated QO2 by nearly 150%. This was associated with a marked increase in production of O2- and H2O2, to 13.9 +/- 1.7 and 13.2 +/- 2.1 nM/mg cell protein, respectively (P less than 0.05), as well as a 38% decrease in cellular ATP. These biochemical effects were all seen after a 30-minute exposure to AH and by 120 minutes were associated with 15.7% +/- 1.1% of RTCs that were unable to exclude vital dye. The effect of AH on QO2 and O2- formation was prevented by pretreatment of RTCs with ouabain, which indicates that the effect of AH on oxygen metabolism is linked to Na-K ATPase activity. However, when ouabain-treated RTCs were exposed to AH, ATP remained depressed despite the inhibition of QO2 and O2- production. In contrast, in ouabain-pretreated RTCs, cell membrane integrity was dramatically protected, because only 2.4% +/- 0.4% of RTCs were not unable to exclude vital dye. Thus, the data demonstrate that E coli AH provokes at least two biochemical events that may be injurious to RTC: increased oxygen intermediates (O2- and H2O2 and ATP depletion. These findings with ouabain suggest that the first mechanism of injury may be a more proximate cause of cell death. Moreover, the data suggest that endogenous production of reactive oxygen molecules may be critical modulators of RTC membrane injury.

Full text

PDF
350

Selected References

These references are in PubMed. This may not be the complete list of references from this article.

  1. Bhakdi S., Mackman N., Nicaud J. M., Holland I. B. Escherichia coli hemolysin may damage target cell membranes by generating transmembrane pores. Infect Immun. 1986 Apr;52(1):63–69. doi: 10.1128/iai.52.1.63-69.1986. [DOI] [PMC free article] [PubMed] [Google Scholar]
  2. Bohach G. A., Snyder I. S. Chemical and immunological analysis of the complex structure of Escherichia coli alpha-hemolysin. J Bacteriol. 1985 Dec;164(3):1071–1080. doi: 10.1128/jb.164.3.1071-1080.1985. [DOI] [PMC free article] [PubMed] [Google Scholar]
  3. Brezis M., Rosen S., Silva P., Epstein F. H. Renal ischemia: a new perspective. Kidney Int. 1984 Oct;26(4):375–383. doi: 10.1038/ki.1984.185. [DOI] [PubMed] [Google Scholar]
  4. Brooks H. J., O'Grady F., McSherry M. A., Cattell W. R. Uropathogenic properties of Escherichia coli in recurrent urinary-tract infection. J Med Microbiol. 1980 Feb;13(1):57–68. doi: 10.1099/00222615-13-1-57. [DOI] [PubMed] [Google Scholar]
  5. Cavalieri S. J., Bohach G. A., Snyder I. S. Escherichia coli alpha-hemolysin: characteristics and probable role in pathogenicity. Microbiol Rev. 1984 Dec;48(4):326–343. doi: 10.1128/mr.48.4.326-343.1984. [DOI] [PMC free article] [PubMed] [Google Scholar]
  6. Cooke E. M., Ewins S. P. Properties of strains of Escherichia coli isolated from a variety of sources. J Med Microbiol. 1975 Feb;8(1):107–111. doi: 10.1099/00222615-8-1-107. [DOI] [PubMed] [Google Scholar]
  7. Felmlee T., Pellett S., Lee E. Y., Welch R. A. Escherichia coli hemolysin is released extracellularly without cleavage of a signal peptide. J Bacteriol. 1985 Jul;163(1):88–93. doi: 10.1128/jb.163.1.88-93.1985. [DOI] [PMC free article] [PubMed] [Google Scholar]
  8. Fry T. L., Fried F. A., Goven B. A. Pathogenesis of pyelonephritis. Escherichia coli-induced renal ultrastructural changes. Invest Urol. 1975 Jul;13(1):47–51. [PubMed] [Google Scholar]
  9. Green C. P., Thomas V. L. Hemagglutination of human type O erythrocytes, hemolysin production, and serogrouping of Escherichia coli isolates from patients with acute pyelonephritis, cystitis, and asymptomatic bacteriuria. Infect Immun. 1981 Jan;31(1):309–315. doi: 10.1128/iai.31.1.309-315.1981. [DOI] [PMC free article] [PubMed] [Google Scholar]
  10. Gstraunthaler G., Pfaller W., Kotanko P. Interrelation between oxygen consumption and Na-K-ATPase activity in rat renal proximal tubule suspension. Ren Physiol. 1985;8(1):38–44. doi: 10.1159/000173032. [DOI] [PubMed] [Google Scholar]
  11. Harris S. I., Balaban R. S., Barrett L., Mandel L. J. Mitochondrial respiratory capacity and Na+- and K+-dependent adenosine triphosphatase-mediated ion transport in the intact renal cell. J Biol Chem. 1981 Oct 25;256(20):10319–10328. [PubMed] [Google Scholar]
  12. Katz A. I. Renal Na-K-ATPase: its role in tubular sodium and potassium transport. Am J Physiol. 1982 Mar;242(3):F207–F219. doi: 10.1152/ajprenal.1982.242.3.F207. [DOI] [PubMed] [Google Scholar]
  13. Keane W. F., Gekker G., Schlievert P. M., Peterson P. K. Enhancement of endotoxin-induced isolated renal tubular cell injury by toxic shock syndrome toxin 1. Am J Pathol. 1986 Jan;122(1):169–176. [PMC free article] [PubMed] [Google Scholar]
  14. LOWRY O. H., ROSEBROUGH N. J., FARR A. L., RANDALL R. J. Protein measurement with the Folin phenol reagent. J Biol Chem. 1951 Nov;193(1):265–275. [PubMed] [Google Scholar]
  15. Mandel L. J., Balaban R. S. Stoichiometry and coupling of active transport to oxidative metabolism in epithelial tissues. Am J Physiol. 1981 May;240(5):F357–F371. doi: 10.1152/ajprenal.1981.240.5.F357. [DOI] [PubMed] [Google Scholar]
  16. Mandel L. J. Primary active sodium transport, oxygen consumption, and ATP: coupling and regulation. Kidney Int. 1986 Jan;29(1):3–9. doi: 10.1038/ki.1986.2. [DOI] [PubMed] [Google Scholar]
  17. McCord J. M. Oxygen-derived free radicals in postischemic tissue injury. N Engl J Med. 1985 Jan 17;312(3):159–163. doi: 10.1056/NEJM198501173120305. [DOI] [PubMed] [Google Scholar]
  18. Moss J., Burns D. L., Hsia J. A., Hewlett E. L., Guerrant R. L., Vaughan M. NIH conference. Cyclic nucleotides: mediators of bacterial toxin action in disease. Ann Intern Med. 1984 Nov;101(5):653–666. doi: 10.7326/0003-4819-101-5-653. [DOI] [PubMed] [Google Scholar]
  19. O'Hanley P., Low D., Romero I., Lark D., Vosti K., Falkow S., Schoolnik G. Gal-Gal binding and hemolysin phenotypes and genotypes associated with uropathogenic Escherichia coli. N Engl J Med. 1985 Aug 15;313(7):414–420. doi: 10.1056/NEJM198508153130704. [DOI] [PubMed] [Google Scholar]
  20. Paller M. S., Hoidal J. R., Ferris T. F. Oxygen free radicals in ischemic acute renal failure in the rat. J Clin Invest. 1984 Oct;74(4):1156–1164. doi: 10.1172/JCI111524. [DOI] [PMC free article] [PubMed] [Google Scholar]
  21. Pick E., Mizel D. Rapid microassays for the measurement of superoxide and hydrogen peroxide production by macrophages in culture using an automatic enzyme immunoassay reader. J Immunol Methods. 1981;46(2):211–226. doi: 10.1016/0022-1759(81)90138-1. [DOI] [PubMed] [Google Scholar]
  22. Smith H. W., Halls S. The transmissible nature of the genetic factor in Escherichia coli that controls haemolysin production. J Gen Microbiol. 1967 Apr;47(1):153–161. doi: 10.1099/00221287-47-1-153. [DOI] [PubMed] [Google Scholar]
  23. Varani J., Fligiel S. E., Till G. O., Kunkel R. G., Ryan U. S., Ward P. A. Pulmonary endothelial cell killing by human neutrophils. Possible involvement of hydroxyl radical. Lab Invest. 1985 Dec;53(6):656–663. [PubMed] [Google Scholar]
  24. Waalwijk C., van den Bosch J. F., MacLaren D. M., de Graaff J. Hemolysin plasmid coding for the virulence of a nephropathogenic Escherichia coli strain. Infect Immun. 1982 Jan;35(1):32–37. doi: 10.1128/iai.35.1.32-37.1982. [DOI] [PMC free article] [PubMed] [Google Scholar]
  25. Wallenstein S., Zucker C. L., Fleiss J. L. Some statistical methods useful in circulation research. Circ Res. 1980 Jul;47(1):1–9. doi: 10.1161/01.res.47.1.1. [DOI] [PubMed] [Google Scholar]
  26. Welch R. A., Dellinger E. P., Minshew B., Falkow S. Haemolysin contributes to virulence of extra-intestinal E. coli infections. Nature. 1981 Dec 17;294(5842):665–667. doi: 10.1038/294665a0. [DOI] [PubMed] [Google Scholar]
  27. Welch R. A., Falkow S. Characterization of Escherichia coli hemolysins conferring quantitative differences in virulence. Infect Immun. 1984 Jan;43(1):156–160. doi: 10.1128/iai.43.1.156-160.1984. [DOI] [PMC free article] [PubMed] [Google Scholar]
  28. Welch R. A., Hull R., Falkow S. Molecular cloning and physical characterization of a chromosomal hemolysin from Escherichia coli. Infect Immun. 1983 Oct;42(1):178–186. doi: 10.1128/iai.42.1.178-186.1983. [DOI] [PMC free article] [PubMed] [Google Scholar]

Articles from The American Journal of Pathology are provided here courtesy of American Society for Investigative Pathology

RESOURCES