Skip to main content
Journal of Virology logoLink to Journal of Virology
. 1996 Mar;70(3):1415–1423. doi: 10.1128/jvi.70.3.1415-1423.1996

Human cytomegalovirus carries serine/threonine protein phosphatases PP1 and a host-cell derived PP2A.

S Michelson 1, P Turowski 1, L Picard 1, J Goris 1, M P Landini 1, A Topilko 1, B Hemmings 1, C Bessia 1, A Garcia 1, J L Virelizier 1
PMCID: PMC189961  PMID: 8627658

Abstract

Human cytomegalovirus (CMV), a herpesvirus, is an important cause of morbidity and mortality in immunocompromised patients. When studying hyper-immediate-early events after contact between CMV virions and the cell membrane, we observed a hypophosphorylation of cellular proteins within 10 min. This can be explained in part by our finding that purified CMV contains serine/threonine protein phosphatase activities. Biochemical analyses indicate that this protein phosphatase activity has all characteristics of type 1 and 2A protein phosphatases (PP1 and PP2A). Specifically, PP1 accounts for approximately 30% and PP2A accounts for the remaining 70% of the phosphorylase phosphatase activity found. CMV produced in astrocytoma cells stably expressing an amino-terminally tagged PP2A catalytic subunit contained tagged enzyme, thus demonstrating the cellular origin of CMV-associated PP2A. PP2A is specifically found inside the virus, associated with the nucleocapsid fraction. Western blot (immunoblot) analysis of purified virus revealed the presence of the catalytic subunits of PP2A and PP1. Furthermore, the catalytic subunit of PP2A appears to be complexed to the regulatory subunits PR65 and PR55, which is also the most abundant configuration of this enzyme found in the host cells. Incubation of virus with okadaic acid before contact of CMV with cells prevented hypophosphorylation of cellular proteins, thus demonstrating the role of CMV-associated phosphatases in this phenomenon. CMV can thus transport an active enzyme from one cell to another.

Full Text

The Full Text of this article is available as a PDF (757.0 KB).

Selected References

These references are in PubMed. This may not be the complete list of references from this article.

  1. Aitken A., Bilham T., Cohen P. Complete primary structure of protein phosphatase inhibitor-1 from rabbit skeletal muscle. Eur J Biochem. 1982 Aug;126(2):235–246. doi: 10.1111/j.1432-1033.1982.tb06771.x. [DOI] [PubMed] [Google Scholar]
  2. Albrecht T., Boldogh I., Fons M. P. Receptor-initiated activation of cells and their oncogenes by herpes-family viruses. J Invest Dermatol. 1992 Jun;98(6 Suppl):29S–35S. doi: 10.1111/1523-1747.ep12462169. [DOI] [PubMed] [Google Scholar]
  3. Bialojan C., Takai A. Inhibitory effect of a marine-sponge toxin, okadaic acid, on protein phosphatases. Specificity and kinetics. Biochem J. 1988 Nov 15;256(1):283–290. doi: 10.1042/bj2560283. [DOI] [PMC free article] [PubMed] [Google Scholar]
  4. Boldogh I., AbuBakar S., Albrecht T. Activation of proto-oncogenes: an immediate early event in human cytomegalovirus infection. Science. 1990 Feb 2;247(4942):561–564. doi: 10.1126/science.1689075. [DOI] [PubMed] [Google Scholar]
  5. Brewis N. D., Street A. J., Prescott A. R., Cohen P. T. PPX, a novel protein serine/threonine phosphatase localized to centrosomes. EMBO J. 1993 Mar;12(3):987–996. doi: 10.1002/j.1460-2075.1993.tb05739.x. [DOI] [PMC free article] [PubMed] [Google Scholar]
  6. Chen Y. H., Chen M. X., Alessi D. R., Campbell D. G., Shanahan C., Cohen P., Cohen P. T. Molecular cloning of cDNA encoding the 110 kDa and 21 kDa regulatory subunits of smooth muscle protein phosphatase 1M. FEBS Lett. 1994 Dec 12;356(1):51–55. doi: 10.1016/0014-5793(94)01231-8. [DOI] [PubMed] [Google Scholar]
  7. Cohen P. Classification of protein-serine/threonine phosphatases: identification and quantitation in cell extracts. Methods Enzymol. 1991;201:389–398. doi: 10.1016/0076-6879(91)01035-z. [DOI] [PubMed] [Google Scholar]
  8. Cohen P., Holmes C. F., Tsukitani Y. Okadaic acid: a new probe for the study of cellular regulation. Trends Biochem Sci. 1990 Mar;15(3):98–102. doi: 10.1016/0968-0004(90)90192-e. [DOI] [PubMed] [Google Scholar]
  9. Cohen P., Klumpp S., Schelling D. L. An improved procedure for identifying and quantitating protein phosphatases in mammalian tissues. FEBS Lett. 1989 Jul 3;250(2):596–600. doi: 10.1016/0014-5793(89)80803-8. [DOI] [PubMed] [Google Scholar]
  10. Cohen P. The structure and regulation of protein phosphatases. Annu Rev Biochem. 1989;58:453–508. doi: 10.1146/annurev.bi.58.070189.002321. [DOI] [PubMed] [Google Scholar]
  11. Gerna G., Zipeto D., Percivalle E., Parea M., Revello M. G., Maccario R., Peri G., Milanesi G. Human cytomegalovirus infection of the major leukocyte subpopulations and evidence for initial viral replication in polymorphonuclear leukocytes from viremic patients. J Infect Dis. 1992 Dec;166(6):1236–1244. doi: 10.1093/infdis/166.6.1236. [DOI] [PubMed] [Google Scholar]
  12. Goris J., Merlevede W. Isolation of an active form of the ATP + Mg2+-dependent protein phosphatase stimulated by the deinhibitor protein and by p-nitrophenyl phosphate. Biochem J. 1988 Sep 1;254(2):501–507. doi: 10.1042/bj2540501. [DOI] [PMC free article] [PubMed] [Google Scholar]
  13. Goris J., Merlevede W. Stimulation of the ATP, Mg-dependent protein phosphatase by p-nitrophenyl phosphate. Anal Biochem. 1988 Jun;171(2):423–428. doi: 10.1016/0003-2697(88)90509-x. [DOI] [PubMed] [Google Scholar]
  14. Goris J., Waelkens E., Camps T., Merlevede W. Regulation of protein phosphatase activity by the deinhibitor protein. Adv Enzyme Regul. 1984;22:467–484. doi: 10.1016/0065-2571(84)90026-8. [DOI] [PubMed] [Google Scholar]
  15. Grefte J. M., van der Gun B. T., Schmolke S., van der Giessen M., van Son W. J., Plachter B., Jahn G., The T. H. The lower matrix protein pp65 is the principal viral antigen present in peripheral blood leukocytes during an active cytomegalovirus infection. J Gen Virol. 1992 Nov;73(Pt 11):2923–2932. doi: 10.1099/0022-1317-73-11-2923. [DOI] [PubMed] [Google Scholar]
  16. Guan K. L., Broyles S. S., Dixon J. E. A Tyr/Ser protein phosphatase encoded by vaccinia virus. Nature. 1991 Mar 28;350(6316):359–362. doi: 10.1038/350359a0. [DOI] [PubMed] [Google Scholar]
  17. Hakes D. J., Martell K. J., Zhao W. G., Massung R. F., Esposito J. J., Dixon J. E. A protein phosphatase related to the vaccinia virus VH1 is encoded in the genomes of several orthopoxviruses and a baculovirus. Proc Natl Acad Sci U S A. 1993 May 1;90(9):4017–4021. doi: 10.1073/pnas.90.9.4017. [DOI] [PMC free article] [PubMed] [Google Scholar]
  18. Hendrix P., Mayer-Jackel R. E., Cron P., Goris J., Hofsteenge J., Merlevede W., Hemmings B. A. Structure and expression of a 72-kDa regulatory subunit of protein phosphatase 2A. Evidence for different size forms produced by alternative splicing. J Biol Chem. 1993 Jul 15;268(20):15267–15276. [PubMed] [Google Scholar]
  19. Hendrix P., Turowski P., Mayer-Jaekel R. E., Goris J., Hofsteenge J., Merlevede W., Hemmings B. A. Analysis of subunit isoforms in protein phosphatase 2A holoenzymes from rabbit and Xenopus. J Biol Chem. 1993 Apr 5;268(10):7330–7337. [PubMed] [Google Scholar]
  20. Hubbard M. J., Cohen P. On target with a new mechanism for the regulation of protein phosphorylation. Trends Biochem Sci. 1993 May;18(5):172–177. doi: 10.1016/0968-0004(93)90109-z. [DOI] [PubMed] [Google Scholar]
  21. Jessus C., Goris J., Staquet S., Cayla X., Ozon R., Merlevede W. Identification of the ATP + Mg-dependent and polycation-stimulated protein phosphatases in the germinal vesicle of the Xenopus oocyte. Biochem J. 1989 May 15;260(1):45–51. doi: 10.1042/bj2600045. [DOI] [PMC free article] [PubMed] [Google Scholar]
  22. Keay S., Baldwin B. The human fibroblast receptor for gp86 of human cytomegalovirus is a phosphorylated glycoprotein. J Virol. 1992 Aug;66(8):4834–4838. doi: 10.1128/jvi.66.8.4834-4838.1992. [DOI] [PMC free article] [PubMed] [Google Scholar]
  23. Landini M. P., Ripalti A. A DNA-nicking activity associated with the nucleocapsid of human cytomegalovirus. Arch Virol. 1982;73(3-4):351–356. doi: 10.1007/BF01318089. [DOI] [PubMed] [Google Scholar]
  24. Liu B., Stinski M. F. Human cytomegalovirus contains a tegument protein that enhances transcription from promoters with upstream ATF and AP-1 cis-acting elements. J Virol. 1992 Jul;66(7):4434–4444. doi: 10.1128/jvi.66.7.4434-4444.1992. [DOI] [PMC free article] [PubMed] [Google Scholar]
  25. Mar E. C., Patel P. C., Huang E. S. Human cytomegalovirus-associated DNA polymerase and protein kinase activities. J Gen Virol. 1981 Nov;57(Pt 1):149–156. doi: 10.1099/0022-1317-57-1-149. [DOI] [PubMed] [Google Scholar]
  26. Mayer-Jaekel R. E., Ohkura H., Gomes R., Sunkel C. E., Baumgartner S., Hemmings B. A., Glover D. M. The 55 kd regulatory subunit of Drosophila protein phosphatase 2A is required for anaphase. Cell. 1993 Feb 26;72(4):621–633. doi: 10.1016/0092-8674(93)90080-a. [DOI] [PubMed] [Google Scholar]
  27. McLeod M., Stein M., Beach D. The product of the mei3+ gene, expressed under control of the mating-type locus, induces meiosis and sporulation in fission yeast. EMBO J. 1987 Mar;6(3):729–736. doi: 10.1002/j.1460-2075.1987.tb04814.x. [DOI] [PMC free article] [PubMed] [Google Scholar]
  28. Meek D. W., Street A. J. Nuclear protein phosphorylation and growth control. Biochem J. 1992 Oct 1;287(Pt 1):1–15. doi: 10.1042/bj2870001. [DOI] [PMC free article] [PubMed] [Google Scholar]
  29. Michelson S., Tardy-Panit M., Bârzu O. Catalytic properties of a human cytomegalovirus-induced protein kinase. Eur J Biochem. 1985 Jun 3;149(2):393–399. doi: 10.1111/j.1432-1033.1985.tb08938.x. [DOI] [PubMed] [Google Scholar]
  30. Mumby M. C., Walter G. Protein phosphatases and DNA tumor viruses: transformation through the back door? Cell Regul. 1991 Aug;2(8):589–598. doi: 10.1091/mbc.2.8.589. [DOI] [PMC free article] [PubMed] [Google Scholar]
  31. Nishioka Y., Silverstein S. Requirement of protein synthesis for the degradation of host mRNA in Friend erythroleukemia cells infected wtih herpes simplex virus type 1. J Virol. 1978 Sep;27(3):619–627. doi: 10.1128/jvi.27.3.619-627.1978. [DOI] [PMC free article] [PubMed] [Google Scholar]
  32. Olivier A. R., Thomas G. Three forms of phosphatase type 1 in Swiss 3T3 fibroblasts. Free catalytic subunit appears to mediate s6 dephosphorylation. J Biol Chem. 1990 Dec 25;265(36):22460–22466. [PubMed] [Google Scholar]
  33. Pallen C. J., Tan Y. H., Guy G. R. Protein phosphatases in cell signalling. Curr Opin Cell Biol. 1992 Dec;4(6):1000–1007. doi: 10.1016/0955-0674(92)90132-v. [DOI] [PubMed] [Google Scholar]
  34. Rice A. P., Roberts B. E. Vaccinia virus induces cellular mRNA degradation. J Virol. 1983 Sep;47(3):529–539. doi: 10.1128/jvi.47.3.529-539.1983. [DOI] [PMC free article] [PubMed] [Google Scholar]
  35. Roby C., Gibson W. Characterization of phosphoproteins and protein kinase activity of virions, noninfectious enveloped particles, and dense bodies of human cytomegalovirus. J Virol. 1986 Sep;59(3):714–727. doi: 10.1128/jvi.59.3.714-727.1986. [DOI] [PMC free article] [PubMed] [Google Scholar]
  36. Sasaki K., Shima H., Kitagawa Y., Irino S., Sugimura T., Nagao M. Identification of members of the protein phosphatase 1 gene family in the rat and enhanced expression of protein phosphatase 1 alpha gene in rat hepatocellular carcinomas. Jpn J Cancer Res. 1990 Dec;81(12):1272–1280. doi: 10.1111/j.1349-7006.1990.tb02690.x. [DOI] [PMC free article] [PubMed] [Google Scholar]
  37. Schmolke S., Drescher P., Jahn G., Plachter B. Nuclear targeting of the tegument protein pp65 (UL83) of human cytomegalovirus: an unusual bipartite nuclear localization signal functions with other portions of the protein to mediate its efficient nuclear transport. J Virol. 1995 Feb;69(2):1071–1078. doi: 10.1128/jvi.69.2.1071-1078.1995. [DOI] [PMC free article] [PubMed] [Google Scholar]
  38. Shacter-Noiman E., Chock P. B. Properties of a Mr = 38,000 phosphoprotein phosphatase. Modulation by divalent cations, ATP, and fluoride. J Biol Chem. 1983 Apr 10;258(7):4214–4219. [PubMed] [Google Scholar]
  39. Shenolikar S., Nairn A. C. Protein phosphatases: recent progress. Adv Second Messenger Phosphoprotein Res. 1991;23:1–121. [PubMed] [Google Scholar]
  40. Smits P. H., Smits H. L., Minnaar R. P., Hemmings B. A., Mayer-Jaekel R. E., Schuurman R., van der Noordaa J., ter Schegget J. The 55 kDa regulatory subunit of protein phosphatase 2A plays a role in the activation of the HPV16 long control region in human cells with a deletion in the short arm of chromosome 11. EMBO J. 1992 Dec;11(12):4601–4606. doi: 10.1002/j.1460-2075.1992.tb05562.x. [DOI] [PMC free article] [PubMed] [Google Scholar]
  41. Spaete R. R., Gehrz R. C., Landini M. P. Human cytomegalovirus structural proteins. J Gen Virol. 1994 Dec;75(Pt 12):3287–3308. doi: 10.1099/0022-1317-75-12-3287. [DOI] [PubMed] [Google Scholar]
  42. Stinski M. F. Human cytomegalovirus: glycoproteins associated with virions and dense bodies. J Virol. 1976 Aug;19(2):594–609. doi: 10.1128/jvi.19.2.594-609.1976. [DOI] [PMC free article] [PubMed] [Google Scholar]
  43. Stone S. R., Hofsteenge J., Hemmings B. A. Molecular cloning of cDNAs encoding two isoforms of the catalytic subunit of protein phosphatase 2A. Biochemistry. 1987 Nov 17;26(23):7215–7220. doi: 10.1021/bi00397a003. [DOI] [PubMed] [Google Scholar]
  44. Taylor-Wiedeman J., Sissons P., Sinclair J. Induction of endogenous human cytomegalovirus gene expression after differentiation of monocytes from healthy carriers. J Virol. 1994 Mar;68(3):1597–1604. doi: 10.1128/jvi.68.3.1597-1604.1994. [DOI] [PMC free article] [PubMed] [Google Scholar]
  45. Topilko A., Michelson S. Hyperimmediate entry of human cytomegalovirus virions and dense bodies into human fibroblasts. Res Virol. 1994 Mar-Apr;145(2):75–82. doi: 10.1016/s0923-2516(07)80009-4. [DOI] [PubMed] [Google Scholar]
  46. Turowski P., Fernandez A., Favre B., Lamb N. J., Hemmings B. A. Differential methylation and altered conformation of cytoplasmic and nuclear forms of protein phosphatase 2A during cell cycle progression. J Cell Biol. 1995 Apr;129(2):397–410. doi: 10.1083/jcb.129.2.397. [DOI] [PMC free article] [PubMed] [Google Scholar]
  47. Ulug E. T., Cartwright A. J., Courtneidge S. A. Characterization of the interaction of polyomavirus middle T antigen with type 2A protein phosphatase. J Virol. 1992 Mar;66(3):1458–1467. doi: 10.1128/jvi.66.3.1458-1467.1992. [DOI] [PMC free article] [PubMed] [Google Scholar]
  48. Wadzinski B. E., Eisfelder B. J., Peruski L. F., Jr, Mumby M. C., Johnson G. L. NH2-terminal modification of the phosphatase 2A catalytic subunit allows functional expression in mammalian cells. J Biol Chem. 1992 Aug 25;267(24):16883–16888. [PubMed] [Google Scholar]
  49. Waelkens E., Goris J., Merlevede W. Purification and properties of polycation-stimulated phosphorylase phosphatases from rabbit skeletal muscle. J Biol Chem. 1987 Jan 25;262(3):1049–1059. [PubMed] [Google Scholar]
  50. Wright J. F., Kurosky A., Pryzdial E. L., Wasi S. Host cellular annexin II is associated with cytomegalovirus particles isolated from cultured human fibroblasts. J Virol. 1995 Aug;69(8):4784–4791. doi: 10.1128/jvi.69.8.4784-4791.1995. [DOI] [PMC free article] [PubMed] [Google Scholar]

Articles from Journal of Virology are provided here courtesy of American Society for Microbiology (ASM)

RESOURCES