Skip to main content
The American Journal of Pathology logoLink to The American Journal of Pathology
. 1987 Oct;129(1):1–8.

Coexpression of keratin and vimentin in damaged and regenerating tubular epithelia of the kidney.

H J Gröne 1, K Weber 1, E Gröne 1, U Helmchen 1, M Osborn 1
PMCID: PMC1899694  PMID: 2444108

Abstract

Most renal cell carcinomas coexpress vimentin and keratin, while renal tubular epithelia express only keratin. Investigation of the intermediate filament composition of tubular epithelia in diseased rat and human kidneys now shows that altered tubular epithelia unequivocally coexpress keratin and vimentin. In rats, pronounced coexpression of vimentin and keratin was observed in chronic nephrosis induced by daunomycin, and the extent of coexpression seemed to increase with the incidence of altered collapsed and cystically dilated tubules and with the degree of tubular epithelial proliferation. It was also seen during tubular regeneration after acute tubulotoxic injury induced by mercury chloride poisoning, with vimentin expression being lost in fully regenerated tubular epithelium. In man, expression was seen in chronically and irreversibly damaged kidneys. Thus, vimentin can be expressed temporarily in acutely and reversibly damaged kidneys and chronically in irreversibly damaged kidneys. Vimentin could perhaps be regarded as an indicator of the regenerating and proliferating activity of tubular lesions.

Full text

PDF
1

Images in this article

Selected References

These references are in PubMed. This may not be the complete list of references from this article.

  1. Bachmann S., Kriz W., Kuhn C., Franke W. W. Differentiation of cell types in the mammalian kidney by immunofluorescence microscopy using antibodies to intermediate filament proteins and desmoplakins. Histochemistry. 1983;77(3):365–394. doi: 10.1007/BF00490899. [DOI] [PubMed] [Google Scholar]
  2. Ben-Ze'ev A. Cell configuration-related control of vimentin biosynthesis and phosphorylation in cultured mammalian cells. J Cell Biol. 1983 Sep;97(3):858–865. doi: 10.1083/jcb.97.3.858. [DOI] [PMC free article] [PubMed] [Google Scholar]
  3. Ben-Ze'ev A. Differential control of cytokeratins and vimentin synthesis by cell-cell contact and cell spreading in cultured epithelial cells. J Cell Biol. 1984 Oct;99(4 Pt 1):1424–1433. doi: 10.1083/jcb.99.4.1424. [DOI] [PMC free article] [PubMed] [Google Scholar]
  4. Ben-Ze'ev A. Tumor promoter-induced disruption of junctional complexes in cultured epithelial cells is followed by the inhibition of cytokeratin and desmoplakin synthesis. Exp Cell Res. 1986 Jun;164(2):335–352. doi: 10.1016/0014-4827(86)90033-9. [DOI] [PubMed] [Google Scholar]
  5. Connell N. D., Rheinwald J. G. Regulation of the cytoskeleton in mesothelial cells: reversible loss of keratin and increase in vimentin during rapid growth in culture. Cell. 1983 Aug;34(1):245–253. doi: 10.1016/0092-8674(83)90155-1. [DOI] [PubMed] [Google Scholar]
  6. Czernobilsky B., Moll R., Levy R., Franke W. W. Co-expression of cytokeratin and vimentin filaments in mesothelial, granulosa and rete ovarii cells of the human ovary. Eur J Cell Biol. 1985 May;37:175–190. [PubMed] [Google Scholar]
  7. Farber E., Sarma D. S. Hepatocarcinogenesis: a dynamic cellular perspective. Lab Invest. 1987 Jan;56(1):4–22. [PubMed] [Google Scholar]
  8. Ferrari S., Battini R., Kaczmarek L., Rittling S., Calabretta B., de Riel J. K., Philiponis V., Wei J. F., Baserga R. Coding sequence and growth regulation of the human vimentin gene. Mol Cell Biol. 1986 Nov;6(11):3614–3620. doi: 10.1128/mcb.6.11.3614. [DOI] [PMC free article] [PubMed] [Google Scholar]
  9. Gröne H. J., Helmchen U. Impairment and recovery of the clipped kidney in two kidney, one clip hypertensive rats during and after antihypertensive therapy. Lab Invest. 1986 Jun;54(6):645–655. [PubMed] [Google Scholar]
  10. Gröne H. J., Weber K., Helmchen U., Osborn M. Villin--a marker of brush border differentiation and cellular origin in human renal cell carcinoma. Am J Pathol. 1986 Aug;124(2):294–302. [PMC free article] [PubMed] [Google Scholar]
  11. Henzen-Logmans S. C., Mullink H., Ramaekers F. C., Tadema T., Meijer C. J. Expression of cytokeratins and vimentin in epithelial cells of normal and pathologic thyroid tissue. Virchows Arch A Pathol Anat Histopathol. 1987;410(4):347–354. doi: 10.1007/BF00711291. [DOI] [PubMed] [Google Scholar]
  12. Herman C. J., Moesker O., Kant A., Huysmans A., Vooijs G. P., Ramaekers F. C. Is renal cell (Grawitz) tumor a carcinosarcoma? Evidence from analysis of intermediate filament types. Virchows Arch B Cell Pathol Incl Mol Pathol. 1983;44(1):73–83. doi: 10.1007/BF02890161. [DOI] [PubMed] [Google Scholar]
  13. Holthöfer H., Miettinen A., Lehto V. P., Lehtonen E., Virtanen I. Expression of vimentin and cytokeratin types of intermediate filament proteins in developing and adult human kidneys. Lab Invest. 1984 May;50(5):552–559. [PubMed] [Google Scholar]
  14. Holthöfer H., Miettinen A., Paasivuo R., Lehto V. P., Linder E., Alfthan O., Virtanen I. Cellular origin and differentiation of renal carcinomas. A fluorescence microscopic study with kidney-specific antibodies, antiintermediate filament antibodies, and lectins. Lab Invest. 1983 Sep;49(3):317–326. [PubMed] [Google Scholar]
  15. Hughson M. D., Buchwald D., Fox M. Renal neoplasia and acquired cystic kidney disease in patients receiving long-term dialysis. Arch Pathol Lab Med. 1986 Jul;110(7):592–601. [PubMed] [Google Scholar]
  16. LaRocca P. J., Rheinwald J. G. Coexpression of simple epithelial keratins and vimentin by human mesothelium and mesothelioma in vivo and in culture. Cancer Res. 1984 Jul;44(7):2991–2999. [PubMed] [Google Scholar]
  17. Lane E. B. Monoclonal antibodies provide specific intramolecular markers for the study of epithelial tonofilament organization. J Cell Biol. 1982 Mar;92(3):665–673. doi: 10.1083/jcb.92.3.665. [DOI] [PMC free article] [PubMed] [Google Scholar]
  18. Magos L., Sparrow S., Snowden R. T. Effect of prolonged saline loading on HgCl2-induced renal tubular damage. Br J Exp Pathol. 1984 Oct;65(5):567–575. [PMC free article] [PubMed] [Google Scholar]
  19. McNutt M. A., Bolen J. W., Gown A. M., Hammar S. P., Vogel A. M. Coexpression of intermediate filaments in human epithelial neoplasms. Ultrastruct Pathol. 1985;9(1-2):31–43. doi: 10.3109/01913128509055483. [DOI] [PubMed] [Google Scholar]
  20. Moll R., Franke W. W., Schiller D. L., Geiger B., Krepler R. The catalog of human cytokeratins: patterns of expression in normal epithelia, tumors and cultured cells. Cell. 1982 Nov;31(1):11–24. doi: 10.1016/0092-8674(82)90400-7. [DOI] [PubMed] [Google Scholar]
  21. Osborn M., Altmannsberger M., Debus E., Weber K. Differentiation of the major human tumor groups using conventional and monoclonal antibodies specific for individual intermediate filament proteins. Ann N Y Acad Sci. 1985;455:649–668. doi: 10.1111/j.1749-6632.1985.tb50442.x. [DOI] [PubMed] [Google Scholar]
  22. Osborn M., Debus E., Weber K. Monoclonal antibodies specific for vimentin. Eur J Cell Biol. 1984 May;34(1):137–143. [PubMed] [Google Scholar]
  23. Springall D. R., Hacker G. W., Grimelius L., Polak J. M. The potential of the immunogold-silver staining method for paraffin sections. Histochemistry. 1984;81(6):603–608. doi: 10.1007/BF00489542. [DOI] [PubMed] [Google Scholar]
  24. Sternberg S. S., Philips F. S., Cronin A. P. Renal tumors and other lesions in rats following a single intravenous injection of daunomycin. Cancer Res. 1972 May;32(5):1029–1036. [PubMed] [Google Scholar]

Articles from The American Journal of Pathology are provided here courtesy of American Society for Investigative Pathology

RESOURCES