Abstract
To investigate the apparent paradox in the observation that most patients with immune thrombocytopenias have normal or increased numbers of megakaryocytes (MKs), the extent of antigenic cross-reactivity between normal platelets and MK was examined. Indirect immunofluorescence and ultrastructural studies were carried out by means of four antisera specific for platelets: anti-GpIb, anti-GpIIb/IIIa, anti-PLA1, and an antiserum from a patient with quinidine-induced thrombocytopenia. Following incubation of freshly collected marrow with these antisera, MK were first identified by phase-contrast microscopy and then inspected for fluorescence. Almost all MKs were found reactive with the last three antisera, albeit to a variable extent. In contrast, only 24% reacted with anti-GpIb. The pattern of fluorescence, ie, rim, partial or cytoplasmic, appeared to be related to the extent of MK fragmentation. Only rim fluorescence of living MKs could be interpreted to indicate that the platelet epitope was exposed on the surface of the precursor cell. The observations suggest that platelet antigens are variably expressed on the plasma membranes of MKs. In a clinical setting, the heterogeneity among platelet target antigens and the extent to which these are exposed on MKs at various stages of maturation may dictate the severity of the thrombocytopenia and degree of ineffective thrombocytopoiesis.
Full text
PDF








Images in this article
Selected References
These references are in PubMed. This may not be the complete list of references from this article.
- Beardsley D. S., Spiegel J. E., Jacobs M. M., Handin R. I., Lux S. E., 4th Platelet membrane glycoprotein IIIa contains target antigens that bind anti-platelet antibodies in immune thrombocytopenias. J Clin Invest. 1984 Nov;74(5):1701–1707. doi: 10.1172/JCI111587. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Behnke O. An electron microscope study of the megacaryocyte of the rat bone marrow. I. The development of the demarcation membrane system and the platelet surface coat. J Ultrastruct Res. 1968 Sep;24(5):412–433. doi: 10.1016/s0022-5320(68)80046-2. [DOI] [PubMed] [Google Scholar]
- Breton-Gorius J., Vanhaeke D., Tabilio A., Vainchenker W., Deschamps J. F., Xu F. S. Glycoprotein I identification during normal and pathological megakaryocytic maturation. Blood Cells. 1983;9(2):275–291. [PubMed] [Google Scholar]
- Christie D. J., Aster R. H. Drug-antibody-platelet interaction in quinine- and quinidine-induced thrombocytopenia. J Clin Invest. 1982 Nov;70(5):989–998. doi: 10.1172/JCI110710. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Coller B. S., Peerschke E. I., Scudder L. E., Sullivan C. A. A murine monoclonal antibody that completely blocks the binding of fibrinogen to platelets produces a thrombasthenic-like state in normal platelets and binds to glycoproteins IIb and/or IIIa. J Clin Invest. 1983 Jul;72(1):325–338. doi: 10.1172/JCI110973. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Coller B. S., Peerschke E. I., Scudder L. E., Sullivan C. A. Studies with a murine monoclonal antibody that abolishes ristocetin-induced binding of von Willebrand factor to platelets: additional evidence in support of GPIb as a platelet receptor for von Willebrand factor. Blood. 1983 Jan;61(1):99–110. [PubMed] [Google Scholar]
- Griner P. F., Hoyer L. W. Amegakaryocytic thrombocytopenia in systemic lupus erythematosus. Arch Intern Med. 1970 Feb;125(2):328–332. [PubMed] [Google Scholar]
- Harker L. A. Thrombokinetics in idiopathic thrombocytopenic purpura. Br J Haematol. 1970 Jul;19(1):95–104. doi: 10.1111/j.1365-2141.1970.tb01605.x. [DOI] [PubMed] [Google Scholar]
- Hoffman R., Zaknoen S., Yang H. H., Bruno E., LoBuglio A. F., Arrowsmith J. B., Prchal J. T. An antibody cytotoxic to megakaryocyte progenitor cells in a patient with immune thrombocytopenic purpura. N Engl J Med. 1985 May 2;312(18):1170–1174. doi: 10.1056/NEJM198505023121807. [DOI] [PubMed] [Google Scholar]
- Hourdille P., Benabdallah S., Belloc F., Nurden A. T. Distribution of glycoprotein IIb-IIIa complexes in the surface membranes of human platelets and megakaryocytes. Br J Haematol. 1985 Jan;59(1):171–182. doi: 10.1111/j.1365-2141.1985.tb02977.x. [DOI] [PubMed] [Google Scholar]
- Kickler T. S., Ness P. M., Herman J. H., Bell W. R. Studies on the pathophysiology of posttransfusion purpura. Blood. 1986 Aug;68(2):347–350. [PubMed] [Google Scholar]
- Kunicki T. J., Christie D. J., Aster R. H. The human platelet receptor(s) for quinine/quinidine-dependent antibodies. Blood Cells. 1983;9(2):293–301. [PubMed] [Google Scholar]
- Levene R. B., Lamaziere J. M., Broxmeyer H. E., Lu L., Rabellino E. M. Human megakaryocytes. V. Changes in the phenotypic profile of differentiating megakaryocytes. J Exp Med. 1985 Mar 1;161(3):457–474. doi: 10.1084/jem.161.3.457. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Mazur E. M., Hoffman R., Chasis J., Marchesi S., Bruno E. Immunofluorescent identification of human megakaryocyte colonies using an antiplatelet glycoprotein antiserum. Blood. 1981 Feb;57(2):277–286. [PubMed] [Google Scholar]
- McMillan R. Immune thrombocytopenia. Clin Haematol. 1983 Feb;12(1):69–88. [PubMed] [Google Scholar]
- McMillan R., Luiken G. A., Levy R., Yelenosky R., Longmire R. L. Antibody against megakaryocytes in idiopathic thrombocytopenic purpura. JAMA. 1978 Jun 9;239(23):2460–2462. doi: 10.1001/jama.239.23.2460. [DOI] [PubMed] [Google Scholar]
- Pizzi F., Carrara P. M., Aldeghi A., Eridani S. Immunofluorescence of megakaryocytes in the thrombocytopenic purpuras. Blood. 1966 Apr;27(4):521–526. [PubMed] [Google Scholar]
- Rabellino E. M., Levene R. B., Leung L. L., Nachman R. L. Human megakaryocytes. II. Expression of platelet proteins in early marrow megakaryocytes. J Exp Med. 1981 Jul 1;154(1):88–100. doi: 10.1084/jem.154.1.88. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Rabellino E. M., Nachman R. L., Williams N., Winchester R. J., Ross G. D. Human megakaryocytes. I. Characterization of the membrane and cytoplasmic components of isolated marrow megakaryocytes. J Exp Med. 1979 Jun 1;149(6):1273–1287. doi: 10.1084/jem.149.6.1273. [DOI] [PMC free article] [PubMed] [Google Scholar]
- SHULMAN N. R. Immunoreactions involving platelets. I. A steric and kinetic model for formation of a complex from a human antibody, quinidine as a haptene, and platelets; and for fixation of complement by the complex. J Exp Med. 1958 May 1;107(5):665–690. doi: 10.1084/jem.107.5.665. [DOI] [PMC free article] [PubMed] [Google Scholar]
- SHULMAN N. R., MARDER V. J., HILLER M. C., COLLIER E. M. PLATELET AND LEUKOCYTE ISOANTIGENS AND THEIR ANTIBODIES: SEROLOGIC PHYSIOLOGIC AND CLINICAL STUDIES. Prog Hematol. 1964;4:222–304. [PubMed] [Google Scholar]
- SILBER R., BENITEZ R., EVELAND W. C., AKEROYD J. H., DUNNE C. J. The application of fluorescent antibody methods to the study of platelets. Blood. 1960 Jul;16:958–967. [PubMed] [Google Scholar]
- Shaklai M., Tavassoli M. Demarcation membrane system in rat megakaryocyte and the mechanism of platelet formation: a membrane reorganization process. J Ultrastruct Res. 1978 Mar;62(3):270–285. doi: 10.1016/s0022-5320(78)80023-9. [DOI] [PubMed] [Google Scholar]
- Stahl C. P., Zucker-Franklin D., McDonald T. P. Incomplete antigenic cross-reactivity between platelets and megakaryocytes: relevance to ITP. Blood. 1986 Feb;67(2):421–428. [PubMed] [Google Scholar]
- Thiagarajan P., Perussia B., De Marco L., Wells K., Trinchieri G. Membrane proteins on human megakaryocytes and platelets identified by monoclonal antibodies. Am J Hematol. 1983 May;14(3):255–269. doi: 10.1002/ajh.2830140307. [DOI] [PubMed] [Google Scholar]
- VAZQUEZ J. J., LEWIS J. H. Immunocytochemical studies on platelets. The demonstration of a common antigen in human platelets and megakaryocytes. Blood. 1960 Jul;16:968–974. [PubMed] [Google Scholar]
- Vainchenker W., Deschamps J. F., Bastin J. M., Guichard J., Titeux M., Breton-Gorius J., McMichael A. J. Two monoclonal antiplatelet antibodies as markers of human megakaryocyte maturation: immunofluorescent staining and platelet peroxidase detection in megakaryocyte colonies and in in vivo cells from normal and leukemic patients. Blood. 1982 Mar;59(3):514–521. [PubMed] [Google Scholar]
- Woods V. L., Jr, Kurata Y., Montgomery R. R., Tani P., Mason D., Oh E. H., McMillan R. Autoantibodies against platelet glycoprotein Ib in patients with chronic immune thrombocytopenic purpura. Blood. 1984 Jul;64(1):156–160. [PubMed] [Google Scholar]
- Woods V. L., Jr, Oh E. H., Mason D., McMillan R. Autoantibodies against the platelet glycoprotein IIb/IIIa complex in patients with chronic ITP. Blood. 1984 Feb;63(2):368–375. [PubMed] [Google Scholar]
- Zucker-Franklin D. Endocytosis by human platelets: metabolic and freeze-fracture studies. J Cell Biol. 1981 Dec;91(3 Pt 1):706–715. doi: 10.1083/jcb.91.3.706. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Zucker-Franklin D., Petursson S. Thrombocytopoiesis--analysis by membrane tracer and freeze-fracture studies on fresh human and cultured mouse megakaryocytes. J Cell Biol. 1984 Aug;99(2):390–402. doi: 10.1083/jcb.99.2.390. [DOI] [PMC free article] [PubMed] [Google Scholar]
- van Leeuwen E. F., Engelfriet C. P., von dem Borne A. E. Studies on quinine- and quinidine-dependent antibodies against platelets and their reaction with platelets in the Bernard-Soulier syndrome. Br J Haematol. 1982 Aug;51(4):551–560. doi: 10.1111/j.1365-2141.1982.tb02818.x. [DOI] [PubMed] [Google Scholar]