Skip to main content
The American Journal of Pathology logoLink to The American Journal of Pathology
. 1984 Feb;114(2):201–208.

Localization of unesterified cholesterol in human atherosclerotic lesions. Demonstration of filipin-positive, oil-red-O-negative particles.

H S Kruth
PMCID: PMC1900338  PMID: 6198918

Abstract

Both unesterified and esterified cholesterol accumulate in human atherosclerotic lesions. Whereas previous studies have established that esterified cholesterol deposits intra- and extracellularly, less is known concerning the distribution of lesion unesterified cholesterol. The objective of this study was to establish the location and in what structures unesterified cholesterol accumulates in lesions. The fluorescent probe filipin has been used to detect unesterified cholesterol. In addition, the lipid-soluble dye oil red O (which does not stain unesterified cholesterol) was used to stain hydrophobic lipids, including esterified cholesterol. Filipin staining occurred in association with three extracellular structures: spherical particles, elongated crystals, and granular or amorphous calcium deposits. These structures were not stained by oil red O. Filipin-stained particles sometimes accumulated within cells, which did not contain any oil-red-O-stained lipid. Interestingly, extracellular filipin-stained particles occurred in loci separate from extracellular oil-red-O-stained particles. The results of this study suggest that accumulation of unesterified and esterified cholesterol occurs within many diverse structures in atherosclerotic lesions. Extracellular filipin-stained particles constituted a significant component of accumulated cholesterol. These cholesterol-rich particles have not been previously observed because they are not stained by lipid-soluble dyes such as oil red O.

Full text

PDF
201

Images in this article

Selected References

These references are in PubMed. This may not be the complete list of references from this article.

  1. BOGREN H., LARSSON K. AN X-RAY-DIFFRACTION STUDY OF CRYSTALLINE CHOLESTEROL IN SOME PATHOLOGICAL DEPOSITS IN MAN. Biochim Biophys Acta. 1963 Jul 23;75:65–69. doi: 10.1016/0006-3002(63)90580-8. [DOI] [PubMed] [Google Scholar]
  2. BOTTCHER C. J., WOODFORD F. P. Chemical changes in the arterial wall associated with atherosclerosis. Fed Proc. 1962 Jul-Aug;21(4):15–19. [PubMed] [Google Scholar]
  3. BUCK R. C., ROSSITER R. J. Lipids of normal and atherosclerotic aortas; a chemical study. AMA Arch Pathol. 1951 Feb;51(2):224–237. [PubMed] [Google Scholar]
  4. BURKHOLDER P. M., LITTELL A. H., KLEIN P. G. Sectioning at room temperature of unfixed tissues, frozen in a gelatin matrix, for immunohistologic procedures. Stain Technol. 1961 Mar;36:89–91. doi: 10.3109/10520296109113250. [DOI] [PubMed] [Google Scholar]
  5. Berberian P. A., Fowler S. The subcellular biochemistry of human arterial lesions. I. Biochemical constituents and marker enzymes in diseased and unaffected portions of human aortic specimens. Exp Mol Pathol. 1979 Feb;30(1):27–40. doi: 10.1016/0014-4800(79)90079-0. [DOI] [PubMed] [Google Scholar]
  6. Bittman R., Fischkoff S. A. Fluorescence studies of the binding of the polyene antibiotics filipin 3, amphotericin B, nystatin, and lagosin to cholesterol. Proc Natl Acad Sci U S A. 1972 Dec;69(12):3795–3799. doi: 10.1073/pnas.69.12.3795. [DOI] [PMC free article] [PubMed] [Google Scholar]
  7. Börnig H., Geyer G. Staining of cholesterol with the fluorescent antibiotic "filipin". Acta Histochem. 1974;50(1):110–115. [PubMed] [Google Scholar]
  8. CHIFFELLE T. L., PUTT F. A. Propylene and ethylene glycol as solvents for Sudan IV and Sudan black B. Stain Technol. 1951 Jan;26(1):51–56. doi: 10.3109/10520295109113178. [DOI] [PubMed] [Google Scholar]
  9. Craven B. M. Crystal structure of cholesterol monohydrate. Nature. 1976 Apr 22;260(5553):727–729. doi: 10.1038/260727a0. [DOI] [PubMed] [Google Scholar]
  10. GIOVACCHINI R. P. Affixing carbowax sections to slides for routine staining. Stain Technol. 1958 Sep;33(5):247–248. [PubMed] [Google Scholar]
  11. Groome A. B. Simultaneous gelatin embedding of multiple areas of the arterial tree. Atherosclerosis. 1977 Jul;27(3):333–338. doi: 10.1016/0021-9150(77)90042-9. [DOI] [PubMed] [Google Scholar]
  12. Insull W., Jr, Bartsch G. E. Cholesterol, triglyceride, and phospholipid content of intima, media, and atherosclerotic fatty streak in human thoracic aorta. J Clin Invest. 1966 Apr;45(4):513–523. doi: 10.1172/JCI105365. [DOI] [PMC free article] [PubMed] [Google Scholar]
  13. Katz S. S., Shipley G. G., Small D. M. Physical chemistry of the lipids of human atherosclerotic lesions. Demonstration of a lesion intermediate between fatty streaks and advanced plaques. J Clin Invest. 1976 Jul;58(1):200–211. doi: 10.1172/JCI108450. [DOI] [PMC free article] [PubMed] [Google Scholar]
  14. Kruth H. S., Vaughan M. Quantification of low density lipoprotein binding and cholesterol accumulation by single human fibroblasts using fluorescence microscopy. J Lipid Res. 1980 Jan;21(1):123–130. [PubMed] [Google Scholar]
  15. LUDDY F. E., BARFORD R. A., RIEMENSCHNEIDER R. W. Fatty acid composition of component lipides from human plasma and atheromas. J Biol Chem. 1958 Jun;232(2):843–851. [PubMed] [Google Scholar]
  16. MOON H. D., RINEHART J. F. Histogenesis of coronary arteriosclerosis. Circulation. 1952 Oct;6(4):481–488. doi: 10.1161/01.cir.6.4.481. [DOI] [PubMed] [Google Scholar]
  17. MOVAT H. Z., HAUST M. D., MORE R. H. The morphologic elements in the early lesions of arteriosclerosis. Am J Pathol. 1959 Jan-Feb;35(1):93–101. [PMC free article] [PubMed] [Google Scholar]
  18. Norman A. W., Demel R. A., de Kruyff B., van Deenen L. L. Studies on the biological properties of polyene antibiotics. Evidence for the direct interaction of filipin with cholesterol. J Biol Chem. 1972 Mar 25;247(6):1918–1929. [PubMed] [Google Scholar]
  19. Panganamala R. V., Geer J. C., Sharma H. M., Cornwell D. G. The gross and histologic appearance and the lipid composition of normal intima and lesions from human coronary arteries and aorta. Atherosclerosis. 1974 Jul-Aug;20(1):93–104. doi: 10.1016/0021-9150(74)90083-5. [DOI] [PubMed] [Google Scholar]
  20. SCHWARTZ C. J., MITCHELL J. R. The morphology, terminology and pathogenesis of arterial plaques. Postgrad Med J. 1962 Jan;38:25–34. doi: 10.1136/pgmj.38.435.25. [DOI] [PMC free article] [PubMed] [Google Scholar]
  21. Schroeder F., Holland J. F., Bieber L. L. Fluorometric investigations of the interaction of polyene antibiotics with sterols. Biochemistry. 1972 Aug 1;11(16):3105–3111. doi: 10.1021/bi00766a026. [DOI] [PubMed] [Google Scholar]
  22. Small D. M., Shipley G. G. Physical-chemical basis of lipid deposition in atherosclerosis. Science. 1974 Jul 19;185(4147):222–229. doi: 10.1126/science.185.4147.222. [DOI] [PubMed] [Google Scholar]
  23. Smith E. B., Evans P. H., Downham M. D. Lipid in the aortic intima. The correlation of morphological and chemical characteristics. J Atheroscler Res. 1967 Mar-Apr;7(2):171–186. doi: 10.1016/s0368-1319(67)80079-6. [DOI] [PubMed] [Google Scholar]
  24. Spector M., Krokosky E. M., Sax M., Pletcher J. Atherosclerotic plaque: x-ray diffraction investigation. Science. 1969 Aug 15;165(3894):711–711. doi: 10.1126/science.165.3894.711. [DOI] [PubMed] [Google Scholar]
  25. van Gent C. M., Emeis J. J. Histochemistry of free and esterified cholesterol in human atherosclerotic arteries. Prog Biochem Pharmacol. 1977;13:262–267. [PubMed] [Google Scholar]

Articles from The American Journal of Pathology are provided here courtesy of American Society for Investigative Pathology

RESOURCES