Skip to main content
The American Journal of Pathology logoLink to The American Journal of Pathology
. 1984 Jul;116(1):46–55.

F-Met-Leu-Phe and echo 9 virus interaction with human granulocytes. Changes of cell membrane structure.

B D Bültmann, P Allmendinger, R U Raus, I Melzner, O Haferkamp, H Eggers, H Gruler
PMCID: PMC1900381  PMID: 6742107

Abstract

Biophysical and biochemical methods were applied for investigation of cell membrane properties of human polymorphonuclear leukocytes (PMNs) exposed to the chemotactic peptide N-formylmethionyl-leucylphenylalanine (f-Met-Leu-Phe) and echovirus type 9, strain A, Barty. Steady-state fluorescence depolarization with diphenylhexatriene demonstrated no gross changes of the total membrane fluidity under the different experimental conditions. However, by means of the monomer-excimer technique with pyrenedecanoic acid (PDA), significant changes of the local membrane structure were detected for both agents. As demonstrated by a higher excimer ratio, the membrane area available for the PDA molecules was restricted by f-Met-Leu-Phe. This effect was dependent on the dose and on the time of interaction of the chemotactic peptide. These experimental findings were explained by the formation of functional receptor units ("activated membrane"). Echo 9 virus exhibited the opposite effect, characterized by a higher ratio of monomers, which also depended on the viral dose and the time of virus-PMN interaction. These virus-induced findings were explained by the dissolution of functional receptor units. Consecutive exposure of the PMNs to f-Met-Leu-Phe and echovirus, or vice versa, demonstrated a virus-predominant effect on the membrane structures.

Full text

PDF
46

Selected References

These references are in PubMed. This may not be the complete list of references from this article.

  1. BARTLETT G. R. Phosphorus assay in column chromatography. J Biol Chem. 1959 Mar;234(3):466–468. [PubMed] [Google Scholar]
  2. Bültmann B. D., Eggers H. J., Galle J., Haferkamp O. Age dependence of paralysis induced by echovirus type 9 in infant mice. J Infect Dis. 1983 Jun;147(6):999–1005. doi: 10.1093/infdis/147.6.999. [DOI] [PubMed] [Google Scholar]
  3. Bültmann B. D., Gruler H. Analysis of the directed and nondirected movement of human granulocytes: influence of temperature and ECHO 9 virus on N-formylmethionylleucylphenylalanine-induced chemokinesis and chemotaxis. J Cell Biol. 1983 Jun;96(6):1708–1716. doi: 10.1083/jcb.96.6.1708. [DOI] [PMC free article] [PubMed] [Google Scholar]
  4. Bültmann B., Eggers H. J., Haferkamp O. Selective inhibition of human neutrophil chemotaxis by ECHO-virus, type 9. Klin Wochenschr. 1981 Jun 1;59(11):571–573. doi: 10.1007/BF01716459. [DOI] [PubMed] [Google Scholar]
  5. Davis B. H., Walter R. J., Pearson C. B., Becker E. L., Oliver J. M. Membrane activity and topography of F-Met-Leu-Phe-Treated polymorphonuclear leukocytes. Acute and sustained responses to chemotactic peptide. Am J Pathol. 1982 Aug;108(2):206–216. [PMC free article] [PubMed] [Google Scholar]
  6. Eggers H. J. Successful treatment of enterovirus-infected mice by 2-(alpha-hydroxybenzyl)-benzimidazole and guanidine. J Exp Med. 1976 Jun 1;143(6):1367–1381. doi: 10.1084/jem.143.6.1367. [DOI] [PMC free article] [PubMed] [Google Scholar]
  7. FOLCH J., LEES M., SLOANE STANLEY G. H. A simple method for the isolation and purification of total lipides from animal tissues. J Biol Chem. 1957 May;226(1):497–509. [PubMed] [Google Scholar]
  8. Galla H. J., Hartmann W. Excimer-forming lipids in membrane research. Chem Phys Lipids. 1980 Oct;27(3):199–219. doi: 10.1016/0009-3084(80)90036-5. [DOI] [PubMed] [Google Scholar]
  9. Goetzl E. J., Foster D. W., Goldman D. W. Isolation and partial characterization of membrane protein constituents of human neutrophil receptors for chemotactic formylmethionyl peptides. Biochemistry. 1981 Sep 29;20(20):5717–5722. doi: 10.1021/bi00523a013. [DOI] [PubMed] [Google Scholar]
  10. Gottfried E. L. Lipids of human leukocytes: relation to celltype. J Lipid Res. 1967 Jul;8(4):321–327. [PubMed] [Google Scholar]
  11. Heyn M. P. Determination of lipid order parameters and rotational correlation times from fluorescence depolarization experiments. FEBS Lett. 1979 Dec 15;108(2):359–364. doi: 10.1016/0014-5793(79)80564-5. [DOI] [PubMed] [Google Scholar]
  12. Hiramatsu K., Arimori S. Lipids in human neutrophils determined by a microanalytical method. J Chromatogr. 1982 May 14;229(2):455–459. doi: 10.1016/s0378-4347(00)84290-5. [DOI] [PubMed] [Google Scholar]
  13. Jähnig F. Structural order of lipids and proteins in membranes: evaluation of fluorescence anisotropy data. Proc Natl Acad Sci U S A. 1979 Dec;76(12):6361–6365. doi: 10.1073/pnas.76.12.6361. [DOI] [PMC free article] [PubMed] [Google Scholar]
  14. Karnovsky M. J., Kleinfeld A. M., Hoover R. L., Klausner R. D. The concept of lipid domains in membranes. J Cell Biol. 1982 Jul;94(1):1–6. doi: 10.1083/jcb.94.1.1. [DOI] [PMC free article] [PubMed] [Google Scholar]
  15. Levanon A., Kohn A. Changes in cell membrane microviscosity associated with adsorption of viruses. Differences between fusing and non-fusing viruses. FEBS Lett. 1978 Jan 15;85(2):245–248. doi: 10.1016/0014-5793(78)80465-7. [DOI] [PubMed] [Google Scholar]
  16. Levanon A., Kohn A., Inbar M. Increase in lipid fluidity of cellular membranes induced by adsorption of RNA and DNA virions. J Virol. 1977 May;22(2):353–360. doi: 10.1128/jvi.22.2.353-360.1977. [DOI] [PMC free article] [PubMed] [Google Scholar]
  17. Oldstone M. B., Fujinami R. S., Lampert P. W. Membrane and cytoplasmic changes in virus-infected cells induced by interactions of antiviral antibody with surface viral antigen. Prog Med Virol. 1980;26:45–93. [PubMed] [Google Scholar]
  18. Oliver J. M. Cell biology of leukocyte abnormalities--membrane and cytoskeletal function in normal and defective cells. A review. Am J Pathol. 1978 Oct;93(1):221–270. [PMC free article] [PubMed] [Google Scholar]
  19. Shinitzky M., Inbar M. Difference in microviscosity induced by different cholesterol levels in the surface membrane lipid layer of normal lymphocytes and malignant lymphoma cells. J Mol Biol. 1974 Jan 5;85(4):603–615. doi: 10.1016/0022-2836(74)90318-0. [DOI] [PubMed] [Google Scholar]
  20. Singer S. J., Nicolson G. L. The fluid mosaic model of the structure of cell membranes. Science. 1972 Feb 18;175(4023):720–731. doi: 10.1126/science.175.4023.720. [DOI] [PubMed] [Google Scholar]
  21. Wilkinson P. C. Leukocyte locomotion and chemotaxis: effects of bacteria and viruses. Rev Infect Dis. 1980 Mar-Apr;2(2):293–318. doi: 10.1093/clinids/2.2.293. [DOI] [PubMed] [Google Scholar]

Articles from The American Journal of Pathology are provided here courtesy of American Society for Investigative Pathology

RESOURCES