Skip to main content
The American Journal of Pathology logoLink to The American Journal of Pathology
. 1984 Jan;114(1):157–163.

Glomerular epithelial cell changes after ischemia or dehydration. Possible role of angiotensin II.

L C Racusen, D H Prozialeck, K Solez
PMCID: PMC1900389  PMID: 6691412

Abstract

Glomerular visceral epithelial cells (podocytes) undergo flattening and spreading of major processes detectable by scanning electron microscopy in early postischemic acute renal failure in both animals and man. The authors examined the kinetics of development of these epithelial cell changes in the renal pedicle-clamping model of ischemic renal failure in the rabbit. They found that these changes develop progressively, increasing with increasing length of ischemia, and occur while the pedicle clamp is still in place. To assess the possible role of angiotensin II and vasopressin in producing the epithelial changes, the authors compared glomerular morphology before and during pedicle clamping in hydrated rabbits and in dehydrated rabbits. Dehydration alone produced changes in glomerular epithelial cells comparable to those seen in the postischemic kidney. The angiotensin-converting enzyme inhibitor captopril did not prevent the podocyte changes in either group. In vitro incubation studies confirmed that both angiotensin II and vasopressin produce glomerular epithelial cell changes with a threshold between 10(-7) M and 10(-8) M, a concentration that may be physiologically significant for angiotensin II, which is synthesized at the glomerulus and may have local paracrine effects. Such local synthesis may not be inhibited by systemic administration of captopril. Angiotensin II may play a role in producing podocyte alterations during renal ischemia, as well as in the dehydrated state.

Full text

PDF
157

Images in this article

Selected References

These references are in PubMed. This may not be the complete list of references from this article.

  1. Ausiello D. A., Kreisberg J. I., Roy C., Karnovsky M. J. Contraction of cultured rat glomerular cells of apparent mesangial origin after stimulation with angiotensin II and arginine vasopressin. J Clin Invest. 1980 Mar;65(3):754–760. doi: 10.1172/JCI109723. [DOI] [PMC free article] [PubMed] [Google Scholar]
  2. Avasthi P. S., Evan A. P., Hay D. Glomerular endothelial cells in uranyl nitrate-induced acute renal failure in rats. J Clin Invest. 1980 Jan;65(1):121–127. doi: 10.1172/JCI109641. [DOI] [PMC free article] [PubMed] [Google Scholar]
  3. Barnes J. L., Osgood R. W., Reineck H. J., Stein J. H. Glomerular alterations in an ischemic model of acute renal failure. Lab Invest. 1981 Oct;45(4):378–386. [PubMed] [Google Scholar]
  4. Besarab A., Ihle B. U., Jarrell B., Burke J. F., Wesson L. G. Some effects of preservation and acute renal failure on function and proteinuria of renal transplants. Am J Kidney Dis. 1983 Jan;2(4):456–463. doi: 10.1016/s0272-6386(83)80078-x. [DOI] [PubMed] [Google Scholar]
  5. Bohrer M. P., Deen W. M., Robertson C. R., Brenner B. M. Mechanism of angiotensin II-induced proteinuria in the rat. Am J Physiol. 1977 Jul;233(1):F13–F21. doi: 10.1152/ajprenal.1977.233.1.F13. [DOI] [PubMed] [Google Scholar]
  6. Celio M. R., Inagami T. Angiotensin II immunoreactivity coexists with renin in the juxtaglomerular granular cells of the kidney. Proc Natl Acad Sci U S A. 1981 Jun;78(6):3897–3900. doi: 10.1073/pnas.78.6.3897. [DOI] [PMC free article] [PubMed] [Google Scholar]
  7. Deen W. M., Satvat B. Determinants of the glomerular filtration of proteins. Am J Physiol. 1981 Aug;241(2):F162–F170. doi: 10.1152/ajprenal.1981.241.2.F162. [DOI] [PubMed] [Google Scholar]
  8. Hornych H., Beaufils M., Richet G. The effect of exogenous angiotensin on superficial and deep glomeruli in the rat kidney. Kidney Int. 1972 Dec;2(6):336–343. doi: 10.1038/ki.1972.117. [DOI] [PubMed] [Google Scholar]
  9. Hoyer J. R., Seiler M. W. Pathophysiology of Tamm-Horsfall protein. Kidney Int. 1979 Sep;16(3):279–289. doi: 10.1038/ki.1979.130. [DOI] [PubMed] [Google Scholar]
  10. Ideura T., Solez K., Heptinstall R. H. The effect of clonidine on tubular obstruction in postischemic acute renal failure in the rabbit demonstrated by microradiography and microdissection. Am J Pathol. 1980 Jan;98(1):123–150. [PMC free article] [PubMed] [Google Scholar]
  11. Michael A. F., Blau E., Vernier R. L. Glomerular polyanion. Alteration in aminonucleoside nephrosis. Lab Invest. 1970 Dec;23(6):649–657. [PubMed] [Google Scholar]
  12. Scharschmidt L. A., Lianos E., Dunn M. J. Arachidonate metabolites and the control of glomerular function. Fed Proc. 1983 Nov;42(14):3058–3063. [PubMed] [Google Scholar]
  13. Seiler M. W., Rennke H. G., Venkatachalam M. A., Cotran R. S. Pathogenesis of polycation-induced alterations ("fusion") of glomerular epithelium. Lab Invest. 1977 Jan;36(1):48–61. [PubMed] [Google Scholar]
  14. Solez K., Ideura T., Silvia C. B., Hamilton B., Saito H. Clonidine after renal ischemia to lessen acute renal failure and microvascular damage. Kidney Int. 1980 Sep;18(3):309–322. doi: 10.1038/ki.1980.141. [DOI] [PubMed] [Google Scholar]
  15. Solez K. Pathogenesis of acute renal failure. Int Rev Exp Pathol. 1983;24:277–333. [PubMed] [Google Scholar]
  16. Solez K., Racusen L. C., Whelton A. Glomerular epithelial cell changes in early postischemic acute renal failure in rabbits and man. Am J Pathol. 1981 May;103(2):163–173. [PMC free article] [PubMed] [Google Scholar]
  17. Wilson D. M., Romero J. C., Strong C. G., Lee K. E., Schryver S. M. Indirect blood pressure measurements in the rabbit: correlations with direct aortic and ear pressures. J Lab Clin Med. 1975 Dec;86(6):1032–1039. [PubMed] [Google Scholar]

Articles from The American Journal of Pathology are provided here courtesy of American Society for Investigative Pathology

RESOURCES