Skip to main content
The American Journal of Pathology logoLink to The American Journal of Pathology
. 1984 Jun;115(3):349–361.

Ultrastructure of cultured adult myocardial cells during anoxia and reoxygenation.

P Schwartz, H M Piper, R Spahr, P G Spieckermann
PMCID: PMC1900509  PMID: 6731585

Abstract

Cultured heart cells from adult rats were exposed to anoxia in a substrate-free Tyrode's solution at constant pH. In this system the metabolic and the morphologic pattern can be investigated simultaneously. Anoxic changes develop gradually above 2 mumol adenosine triphosphate (ATP)/ gww . Morphometry reveals that the morphologic changes are closely related to the energetic state: creatine phosphate (CP) decay is accompanied by the loss of small mitochondrial matrix granules (r = 0.97). The fall of ATP is coincident with sarcomere shortening (r = 0.95) and, below 4 mumol/ gww , with mitochondrial swelling (r = -0.88). The number of lipid droplets correlates with the ATP level during anoxia and reoxygenation (r = -0.92). The early energetic depletion is accompanied by a moderate release of cytosolic enzymes and morphologic changes: the appearance of sarcolemmal microblebs and an increase in subsarcolemmal vesicles. Below an average ATP level of 2 mumol/ gww an increasing number of individual cells fail to recover when reoxygenated . However, that failure is accompanied neither by massive enzyme release nor by ultrastructural damage regarded as typical for the "oxygen paradox."

Full text

PDF
349

Images in this article

Selected References

These references are in PubMed. This may not be the complete list of references from this article.

  1. Armiger L. C., Gavin J. B., Herdson P. B. Mitochondrial changes in dog myocardium induced by neutral lactate in vitro. Lab Invest. 1974 Jul;31(1):29–33. [PubMed] [Google Scholar]
  2. Barlow C. H., Chance B. Ischemic areas in perfused rat hearts: measurement by NADH fluorescence photography. Science. 1976 Sep 3;193(4256):909–910. doi: 10.1126/science.181843. [DOI] [PubMed] [Google Scholar]
  3. Bilheimer D. W., Buja L. M., Parkey R. W., Bonte F. J., Willerson J. T. Fatty acid accumulation and abnormal lipid deposition in peripheral and border zones of experimental myocardial infarcts. J Nucl Med. 1978 Mar;19(3):276–283. [PubMed] [Google Scholar]
  4. Burton K. P., Templeton G. H., Hagler H. K., Willerson J. T., Buja L. M. Effect of glucose availability on functional membrane integrity, ultrastructure and contractile performance following hypoxia and reoxygenation in isolated feline cardiac muscle. J Mol Cell Cardiol. 1980 Jan;12(1):109–133. doi: 10.1016/0022-2828(80)90114-5. [DOI] [PubMed] [Google Scholar]
  5. CAULFIELD J., KLIONSKY B. Myocardial ischemia and early infarction: an electron microscopic study. Am J Pathol. 1959 May-Jun;35(3):489–523. [PMC free article] [PubMed] [Google Scholar]
  6. Denker M. W., Bergman R. A., Nachlas M. M. Ultrastructural changes in myocardium during experimental ischemia. Johns Hopkins Med J. 1969 Jun;124(6):311–329. [PubMed] [Google Scholar]
  7. Ganote C. E., Angelo J., Safavi S., Kaltenbach J. P. Protection from irreversible hypoxic injury by potassium cardioplegia and hypothermia: effects on contracture, morphology and O2-enzyme release. J Mol Cell Cardiol. 1982 Oct;14(10):587–599. doi: 10.1016/0022-2828(82)90145-6. [DOI] [PubMed] [Google Scholar]
  8. Ganote C. E. Contraction band necrosis and irreversible myocardial injury. J Mol Cell Cardiol. 1983 Feb;15(2):67–73. doi: 10.1016/0022-2828(83)90283-3. [DOI] [PubMed] [Google Scholar]
  9. Ganote C. E., Jennings R. B., Hill M. L., Grochowski E. Experimental myocardial ischemic injury. II. Effect of in vivo ischemia on dog heart slice function in vitro. J Mol Cell Cardiol. 1976 Mar;8(3):189–204. doi: 10.1016/0022-2828(76)90036-5. [DOI] [PubMed] [Google Scholar]
  10. Ganote C. E., Kaltenbach J. P. Oxygen-induced enzyme release: early events and a proposed mechanism. J Mol Cell Cardiol. 1979 Apr;11(4):389–406. doi: 10.1016/0022-2828(79)90425-5. [DOI] [PubMed] [Google Scholar]
  11. Ganote C. E., Seabra-Gomes R., Nayler W. G., Jennings R. B. Irreversible myocardial injury in anoxic perfused rat hearts. Am J Pathol. 1975 Sep;80(3):419–450. [PMC free article] [PubMed] [Google Scholar]
  12. Goldstein M. A., Thyrum P. T., Murphy D. L., Martin J. H., Schwartz A. Ultrastructural and contractile characteristics of isolated papillary muscle exposed to acute hypoxia. J Mol Cell Cardiol. 1977 Apr;9(4):285–295. doi: 10.1016/s0022-2828(77)80035-7. [DOI] [PubMed] [Google Scholar]
  13. Gordon G. B., Barcza M. A., Bush M. E. Lipid accumulation of hypoxic tissue culture cells. Am J Pathol. 1977 Sep;88(3):663–678. [PMC free article] [PubMed] [Google Scholar]
  14. Grieve S. J., Williams A. J. The isolation and characterization of cardiac mitochondrial fractions from isoprenaline treated rats. J Mol Cell Cardiol. 1981 Aug;13(8):705–714. doi: 10.1016/0022-2828(81)90253-4. [DOI] [PubMed] [Google Scholar]
  15. Hatt P. Y., Moravec J. Acute hypoxia of the myocardium. Ultrastructural changes. Cardiology. 1971;56(1):73–84. doi: 10.1159/000169343. [DOI] [PubMed] [Google Scholar]
  16. Haworth R. A., Hunter D. R., Berkoff H. A. Contracture in isolated adult rat heart cells. Role of Ca2+, ATP, and compartmentation. Circ Res. 1981 Nov;49(5):1119–1128. doi: 10.1161/01.res.49.5.1119. [DOI] [PubMed] [Google Scholar]
  17. Hearse D. J., Garlick P. B., Humphrey S. M. Ischemic contracture of the myocardium: mechanisms and prevention. Am J Cardiol. 1977 Jun;39(7):986–993. doi: 10.1016/s0002-9149(77)80212-9. [DOI] [PubMed] [Google Scholar]
  18. Hohl C. M., Altschuld R. A., Brierley G. P. Effects of calcium on the permeability of isolated adult rat heart cells to sodium. Arch Biochem Biophys. 1983 Feb 15;221(1):197–205. doi: 10.1016/0003-9861(83)90136-4. [DOI] [PubMed] [Google Scholar]
  19. ISSELHARD W. [The behavior of the energy metabolism in the warm-blooded heart in induced cardiac arrest]. Pflugers Arch Gesamte Physiol Menschen Tiere. 1960;271:347–360. [PubMed] [Google Scholar]
  20. Isselhard W., Mäurer W., Stremmel W., Krebs J., Schmitz H., Neuhof H., Esser A. Stoffwechsel des Kaninchenherzens in situ während Asphyxie und in der post-asphyktischen Erholung. Pflugers Arch. 1970;316(2):164–193. doi: 10.1007/BF00586484. [DOI] [PubMed] [Google Scholar]
  21. Jennings R. B., Ganote C. E. Structural changes in myocardium during acute ischemia. Circ Res. 1974 Sep;35 (Suppl 3):156–172. [PubMed] [Google Scholar]
  22. Jennings R. B., Hawkins H. K., Lowe J. E., Hill M. L., Klotman S., Reimer K. A. Relation between high energy phosphate and lethal injury in myocardial ischemia in the dog. Am J Pathol. 1978 Jul;92(1):187–214. [PMC free article] [PubMed] [Google Scholar]
  23. Jennings R. B., Reimer K. A., Hill M. L., Mayer S. E. Total ischemia in dog hearts, in vitro. 1. Comparison of high energy phosphate production, utilization, and depletion, and of adenine nucleotide catabolism in total ischemia in vitro vs. severe ischemia in vivo. Circ Res. 1981 Oct;49(4):892–900. doi: 10.1161/01.res.49.4.892. [DOI] [PubMed] [Google Scholar]
  24. Jennings R. B., Sommers H. M., Herdson P. B., Kaltenbach J. P. Ischemic injury of myocardium. Ann N Y Acad Sci. 1969 Jan 31;156(1):61–78. doi: 10.1111/j.1749-6632.1969.tb16718.x. [DOI] [PubMed] [Google Scholar]
  25. KAMMERMEIER H. VERHALTEN VON ADENIN-NUKLEOTIDEN UND KREATINPHOSPHAT IM HERZMUSKEL BEI FUNKTIONELLER ERHOLUNG NACH LAENGER DAUERNDER ASPHYXIE. Verh Dtsch Ges Kreislaufforsch. 1964;30:206–211. [PubMed] [Google Scholar]
  26. Katz A. M., Messineo F. C. Lipid-membrane interactions and the pathogenesis of ischemic damage in the myocardium. Circ Res. 1981 Jan;48(1):1–16. doi: 10.1161/01.res.48.1.1. [DOI] [PubMed] [Google Scholar]
  27. Katz A. M., Tada M. The "stone heart": a challenge to the biochemist. Am J Cardiol. 1972 Apr;29(4):578–580. doi: 10.1016/0002-9149(72)90455-9. [DOI] [PubMed] [Google Scholar]
  28. Krueger J. W., Forletti D., Wittenberg B. A. Uniform sarcomere shortening behavior in isolated cardiac muscle cells. J Gen Physiol. 1980 Nov;76(5):587–607. doi: 10.1085/jgp.76.5.587. [DOI] [PMC free article] [PubMed] [Google Scholar]
  29. Kübler W., Spieckermann P. G. Regulation of glycolysis in the ischemic and the anoxic myocardium. J Mol Cell Cardiol. 1970 Dec;1(4):351–377. doi: 10.1016/0022-2828(70)90034-9. [DOI] [PubMed] [Google Scholar]
  30. Murfitt R. R., Stiles J. W., Powell W. J., Jr, Sanadi D. R. Experimental myocardial ischemia characteristics of isolated mitochondrial subpopulations. J Mol Cell Cardiol. 1978 Feb;10(2):109–123. doi: 10.1016/0022-2828(78)90036-6. [DOI] [PubMed] [Google Scholar]
  31. Oliver I. T., Edwards A. M., Pitot H. C. Hormonal regulation of phosphoenolpyruvate carboxykinase in primary cultures of adult-rat liver parenchymal cells. Eur J Biochem. 1978 Jun 15;87(2):221–227. doi: 10.1111/j.1432-1033.1978.tb12369.x. [DOI] [PubMed] [Google Scholar]
  32. Paulussen F., Hübner G., Grebe D., Bretschneider H. J. Die Feinstruktur des Herzmuskels vährend einer Ischämie mit Senkung des Energiebedarfes durch spezielle Kardioplegie. Klin Wochenschr. 1968 Feb 15;46(4):165–171. doi: 10.1007/BF01746228. [DOI] [PubMed] [Google Scholar]
  33. Piper H. M., Probst I., Schwartz P., Hütter F. J., Spieckermann P. G. Culturing of calcium stable adult cardiac myocytes. J Mol Cell Cardiol. 1982 Jul;14(7):397–412. doi: 10.1016/0022-2828(82)90171-7. [DOI] [PubMed] [Google Scholar]
  34. Powell T., Twist V. W. A rapid technique for the isolation and purification of adult cardiac muscle cells having respiratory control and a tolerance to calcium. Biochem Biophys Res Commun. 1976 Sep 7;72(1):327–333. doi: 10.1016/0006-291x(76)90997-9. [DOI] [PubMed] [Google Scholar]
  35. Scheuer J., Brachfeld N. Myocardial uptake and fractional distribution of palmitate-1 C14 by the ischemic dog heart. Metabolism. 1966 Oct;15(10):945–954. doi: 10.1016/0026-0495(66)90165-x. [DOI] [PubMed] [Google Scholar]
  36. Steenbergen C., Deleeuw G., Barlow C., Chance B., Williamson J. R. Heterogeneity of the hypoxic state in perfused rat heart. Circ Res. 1977 Nov;41(5):606–615. doi: 10.1161/01.res.41.5.606. [DOI] [PubMed] [Google Scholar]
  37. Whitty A. J., Dimino M. J., Elfont E. A., Hughes G. W., Repeck M. W. Transmural mitochondrial differences in myocardium. Recent Adv Stud Cardiac Struct Metab. 1976 May 26;11:349–354. [PubMed] [Google Scholar]

Articles from The American Journal of Pathology are provided here courtesy of American Society for Investigative Pathology

RESOURCES