Skip to main content
Journal of Virology logoLink to Journal of Virology
. 1996 Apr;70(4):2154–2161. doi: 10.1128/jvi.70.4.2154-2161.1996

A new antisense tRNA construct for the genetic treatment of human immunodeficiency virus type 1 infection.

M A Biasolo 1, A Radaelli 1, L Del Pup 1, E Franchin 1, C De Giuli-Morghen 1, G Palu 1
PMCID: PMC190053  PMID: 8642637

Abstract

Different strategies proposed in the literature to attempt gene therapy of AIDS are based mainly on the intracellular production of RNA and protein therapeutics. This report describes the construction and the anti-human immunodeficiency virus type 1 (HIV-1) activity of a new type of antisense tRNA directed against a nucleotide region in the first coding exon of HIV-1 tat (nucleotides 5924 to 5943; Los Alamos data bank) which is conserved among many HIV-1 clones. The anti-tat antisense sequence was inserted into a tRNA(Pro) backbone by replacement of the anticodon loop, without altering the tRNA canonic tetraloop structure. The antisense tRNA was able to interact effectively with its target in vitro. Jurkat cells that constitutively expressed the anti-tat tRNA following retroviral vector transduction exhibited significant resistance to HIV-1 de novo infection. Resistance seemed to correlate with the level of antisense expression. This is the first time that such a tRNA antisense strategy has been shown to be effective as a genetic treatment of HIV-1 infection in tissue culture. The construct design proposed in this report has some intrinsic advantages: the transcript is driven by a polymerase III promoter, the short length of the RNA minimizes effects of intramolecular base pairing that may impair target recognition, and the antisense RNA has the stability and intracellular fate of a native tRNA molecule.

Full Text

The Full Text of this article is available as a PDF (372.4 KB).

Selected References

These references are in PubMed. This may not be the complete list of references from this article.

  1. Agostini C., Zambello R., Trentin L., Cerutti A., Enthammer C., Facco M., Milani A., Sancetta R., Garbisa S., Semenzato G. Expression of TNF receptors by T cells and membrane TNF-alpha by alveolar macrophages suggests a role for TNF-alpha in the regulation of the local immune responses in the lung of HIV-1-infected patients. J Immunol. 1995 Mar 15;154(6):2928–2938. [PubMed] [Google Scholar]
  2. Agrawal S. Antisense oligonucleotides as antiviral agents. Trends Biotechnol. 1992 May;10(5):152–158. doi: 10.1016/0167-7799(92)90203-8. [DOI] [PubMed] [Google Scholar]
  3. Anderson W. F. Human gene therapy. Science. 1992 May 8;256(5058):808–813. doi: 10.1126/science.1589762. [DOI] [PubMed] [Google Scholar]
  4. Baltimore D. Gene therapy. Intracellular immunization. Nature. 1988 Sep 29;335(6189):395–396. doi: 10.1038/335395a0. [DOI] [PubMed] [Google Scholar]
  5. Bevec D., Volc-Platzer B., Zimmermann K., Dobrovnik M., Hauber J., Veres G., Böhnlein E. Constitutive expression of chimeric neo-Rev response element transcripts suppresses HIV-1 replication in human CD4+ T lymphocytes. Hum Gene Ther. 1994 Feb;5(2):193–201. doi: 10.1089/hum.1994.5.2-193. [DOI] [PubMed] [Google Scholar]
  6. Buchschacher G. L., Jr Molecular targets of gene transfer therapy for HIV infection. JAMA. 1993 Jun 9;269(22):2880–2886. [PubMed] [Google Scholar]
  7. Ciampi M. S., Melton D. A., Cortese R. Site-directed mutagenesis of a tRNA gene: base alterations in the coding region affect transcription. Proc Natl Acad Sci U S A. 1982 Mar;79(5):1388–1392. doi: 10.1073/pnas.79.5.1388. [DOI] [PMC free article] [PubMed] [Google Scholar]
  8. Ciliberto G., Castagnoli L., Melton D. A., Cortese R. Promoter of a eukaryotic tRNAPro gene is composed of three noncontiguous regions. Proc Natl Acad Sci U S A. 1982 Feb;79(4):1195–1199. doi: 10.1073/pnas.79.4.1195. [DOI] [PMC free article] [PubMed] [Google Scholar]
  9. Cotten M., Birnstiel M. L. Ribozyme mediated destruction of RNA in vivo. EMBO J. 1989 Dec 1;8(12):3861–3866. doi: 10.1002/j.1460-2075.1989.tb08564.x. [DOI] [PMC free article] [PubMed] [Google Scholar]
  10. Crisell P., Thompson S., James W. Inhibition of HIV-1 replication by ribozymes that show poor activity in vitro. Nucleic Acids Res. 1993 Nov 11;21(22):5251–5255. doi: 10.1093/nar/21.22.5251. [DOI] [PMC free article] [PubMed] [Google Scholar]
  11. Cullen B. R. The HIV-1 Tat protein: an RNA sequence-specific processivity factor? Cell. 1990 Nov 16;63(4):655–657. doi: 10.1016/0092-8674(90)90129-3. [DOI] [PubMed] [Google Scholar]
  12. Elangovan B., Subramanian T., Chinnadurai G. Functional comparison of the basic domains of the Tat proteins of human immunodeficiency virus types 1 and 2 in trans activation. J Virol. 1992 Apr;66(4):2031–2036. doi: 10.1128/jvi.66.4.2031-2036.1992. [DOI] [PMC free article] [PubMed] [Google Scholar]
  13. Gabrielsen O. S., Sentenac A. RNA polymerase III (C) and its transcription factors. Trends Biochem Sci. 1991 Nov;16(11):412–416. doi: 10.1016/0968-0004(91)90166-s. [DOI] [PubMed] [Google Scholar]
  14. Gait M. J., Karn J. RNA recognition by the human immunodeficiency virus Tat and Rev proteins. Trends Biochem Sci. 1993 Jul;18(7):255–259. doi: 10.1016/0968-0004(93)90176-n. [DOI] [PubMed] [Google Scholar]
  15. Galli G., Hofstetter H., Birnstiel M. L. Two conserved sequence blocks within eukaryotic tRNA genes are major promoter elements. Nature. 1981 Dec 17;294(5842):626–631. doi: 10.1038/294626a0. [DOI] [PubMed] [Google Scholar]
  16. Goodchild J., Agrawal S., Civeira M. P., Sarin P. S., Sun D., Zamecnik P. C. Inhibition of human immunodeficiency virus replication by antisense oligodeoxynucleotides. Proc Natl Acad Sci U S A. 1988 Aug;85(15):5507–5511. doi: 10.1073/pnas.85.15.5507. [DOI] [PMC free article] [PubMed] [Google Scholar]
  17. Gyotoku J., el-Farrash M. A., Fujimoto S., Germeraad W. T., Watanabe Y., Teshigawara K., Harada S., Katsura Y. Inhibition of human immunodeficiency virus replication in a human T cell line by antisense RNA expressed in the cell. Virus Genes. 1991 Jul;5(3):189–202. doi: 10.1007/BF00568969. [DOI] [PubMed] [Google Scholar]
  18. Haseloff J., Gerlach W. L. Simple RNA enzymes with new and highly specific endoribonuclease activities. Nature. 1988 Aug 18;334(6183):585–591. doi: 10.1038/334585a0. [DOI] [PubMed] [Google Scholar]
  19. Haseltine W. A. Molecular biology of the human immunodeficiency virus type 1. FASEB J. 1991 Jul;5(10):2349–2360. doi: 10.1096/fasebj.5.10.1829694. [DOI] [PubMed] [Google Scholar]
  20. Homann M., Rittner K., Sczakiel G. Complementary large loops determine the rate of RNA duplex formation in vitro in the case of an effective antisense RNA directed against the human immunodeficiency virus type 1. J Mol Biol. 1993 Sep 5;233(1):7–15. doi: 10.1006/jmbi.1993.1480. [DOI] [PubMed] [Google Scholar]
  21. Joshi S., Van Brunschot A., Asad S., van der Elst I., Read S. E., Bernstein A. Inhibition of human immunodeficiency virus type 1 multiplication by antisense and sense RNA expression. J Virol. 1991 Oct;65(10):5524–5530. doi: 10.1128/jvi.65.10.5524-5530.1991. [DOI] [PMC free article] [PubMed] [Google Scholar]
  22. Junker U., Rittner K., Homann M., Bevec D., Böhnlein E., Sczakiel G. Reduction in replication of the human immunodeficiency virus type 1 in human T cell lines by polymerase III-driven transcription of chimeric tRNA-antisense RNA genes. Antisense Res Dev. 1994 Fall;4(3):165–172. doi: 10.1089/ard.1994.4.165. [DOI] [PubMed] [Google Scholar]
  23. Lamb J. W., Hay R. T. Ribozymes that cleave potato leafroll virus RNA within the coat protein and polymerase genes. J Gen Virol. 1990 Oct;71(Pt 10):2257–2264. doi: 10.1099/0022-1317-71-10-2257. [DOI] [PubMed] [Google Scholar]
  24. Leavitt M. C., Yu M., Yamada O., Kraus G., Looney D., Poeschla E., Wong-Staal F. Transfer of an anti-HIV-1 ribozyme gene into primary human lymphocytes. Hum Gene Ther. 1994 Sep;5(9):1115–1120. doi: 10.1089/hum.1994.5.9-1115. [DOI] [PubMed] [Google Scholar]
  25. Lisziewicz J., Sun D., Trapnell B., Thomson M., Chang H. K., Ensoli B., Peng B. An autoregulated dual-function antitat gene for human immunodeficiency virus type 1 gene therapy. J Virol. 1995 Jan;69(1):206–212. doi: 10.1128/jvi.69.1.206-212.1995. [DOI] [PMC free article] [PubMed] [Google Scholar]
  26. Lo K. M., Biasolo M. A., Dehni G., Palú G., Haseltine W. A. Inhibition of replication of HIV-1 by retroviral vectors expressing tat-antisense and anti-tat ribozyme RNA. Virology. 1992 Sep;190(1):176–183. doi: 10.1016/0042-6822(92)91203-7. [DOI] [PubMed] [Google Scholar]
  27. Marciniak R. A., Calnan B. J., Frankel A. D., Sharp P. A. HIV-1 Tat protein trans-activates transcription in vitro. Cell. 1990 Nov 16;63(4):791–802. doi: 10.1016/0092-8674(90)90145-5. [DOI] [PubMed] [Google Scholar]
  28. Miller A. D., Buttimore C. Redesign of retrovirus packaging cell lines to avoid recombination leading to helper virus production. Mol Cell Biol. 1986 Aug;6(8):2895–2902. doi: 10.1128/mcb.6.8.2895. [DOI] [PMC free article] [PubMed] [Google Scholar]
  29. Miller A. D. Human gene therapy comes of age. Nature. 1992 Jun 11;357(6378):455–460. doi: 10.1038/357455a0. [DOI] [PubMed] [Google Scholar]
  30. Moffat A. S. Making sense of antisense. Science. 1991 Aug 2;253(5019):510–511. doi: 10.1126/science.1857981. [DOI] [PubMed] [Google Scholar]
  31. Morsy M. A., Mitani K., Clemens P., Caskey C. T. Progress toward human gene therapy. JAMA. 1993 Nov 17;270(19):2338–2345. [PubMed] [Google Scholar]
  32. Ojwang J. O., Hampel A., Looney D. J., Wong-Staal F., Rappaport J. Inhibition of human immunodeficiency virus type 1 expression by a hairpin ribozyme. Proc Natl Acad Sci U S A. 1992 Nov 15;89(22):10802–10806. doi: 10.1073/pnas.89.22.10802. [DOI] [PMC free article] [PubMed] [Google Scholar]
  33. Pieken W. A., Olsen D. B., Benseler F., Aurup H., Eckstein F. Kinetic characterization of ribonuclease-resistant 2'-modified hammerhead ribozymes. Science. 1991 Jul 19;253(5017):314–317. doi: 10.1126/science.1857967. [DOI] [PubMed] [Google Scholar]
  34. Ratner L., Haseltine W., Patarca R., Livak K. J., Starcich B., Josephs S. F., Doran E. R., Rafalski J. A., Whitehorn E. A., Baumeister K. Complete nucleotide sequence of the AIDS virus, HTLV-III. Nature. 1985 Jan 24;313(6000):277–284. doi: 10.1038/313277a0. [DOI] [PubMed] [Google Scholar]
  35. Rho H. M., Poiesz B., Ruscetti F. W., Gallo R. C. Characterization of the reverse transcriptase from a new retrovirus (HTLV) produced by a human cutaneous T-cell lymphoma cell line. Virology. 1981 Jul 15;112(1):355–360. doi: 10.1016/0042-6822(81)90642-5. [DOI] [PubMed] [Google Scholar]
  36. Rhodes A., James W. Inhibition of heterologous strains of HIV by antisense RNA. AIDS. 1991 Feb;5(2):145–151. doi: 10.1097/00002030-199102000-00003. [DOI] [PubMed] [Google Scholar]
  37. Rhodes A., James W. Inhibition of human immunodeficiency virus replication in cell culture by endogenously synthesized antisense RNA. J Gen Virol. 1990 Sep;71(Pt 9):1965–1974. doi: 10.1099/0022-1317-71-9-1965. [DOI] [PubMed] [Google Scholar]
  38. Rittner K., Burmester C., Sczakiel G. In vitro selection of fast-hybridizing and effective antisense RNAs directed against the human immunodeficiency virus type 1. Nucleic Acids Res. 1993 Mar 25;21(6):1381–1387. doi: 10.1093/nar/21.6.1381. [DOI] [PMC free article] [PubMed] [Google Scholar]
  39. Rossi G., Albertin G., Belloni A., Zanin L., Biasolo M. A., Prayer-Galetti T., Bader M., Nussdorfer G. G., Palù G., Pessina A. C. Gene expression, localization, and characterization of endothelin A and B receptors in the human adrenal cortex. J Clin Invest. 1994 Sep;94(3):1226–1234. doi: 10.1172/JCI117440. [DOI] [PMC free article] [PubMed] [Google Scholar]
  40. Rossi J. J., Elkins D., Zaia J. A., Sullivan S. Ribozymes as anti-HIV-1 therapeutic agents: principles, applications, and problems. AIDS Res Hum Retroviruses. 1992 Feb;8(2):183–189. doi: 10.1089/aid.1992.8.183. [DOI] [PubMed] [Google Scholar]
  41. Ruben S., Perkins A., Purcell R., Joung K., Sia R., Burghoff R., Haseltine W. A., Rosen C. A. Structural and functional characterization of human immunodeficiency virus tat protein. J Virol. 1989 Jan;63(1):1–8. doi: 10.1128/jvi.63.1.1-8.1989. [DOI] [PMC free article] [PubMed] [Google Scholar]
  42. Sczakiel G., Oppenländer M., Rittner K., Pawlita M. Tat- and Rev-directed antisense RNA expression inhibits and abolishes replication of human immunodeficiency virus type 1: a temporal analysis. J Virol. 1992 Sep;66(9):5576–5581. doi: 10.1128/jvi.66.9.5576-5581.1992. [DOI] [PMC free article] [PubMed] [Google Scholar]
  43. Sczakiel G., Pawlita M. Inhibition of human immunodeficiency virus type 1 replication in human T cells stably expressing antisense RNA. J Virol. 1991 Jan;65(1):468–472. doi: 10.1128/jvi.65.1.468-472.1991. [DOI] [PMC free article] [PubMed] [Google Scholar]
  44. Stein C. A., Cheng Y. C. Antisense oligonucleotides as therapeutic agents--is the bullet really magical? Science. 1993 Aug 20;261(5124):1004–1012. doi: 10.1126/science.8351515. [DOI] [PubMed] [Google Scholar]
  45. Stephenson M. L., Zamecnik P. C. Inhibition of Rous sarcoma viral RNA translation by a specific oligodeoxyribonucleotide. Proc Natl Acad Sci U S A. 1978 Jan;75(1):285–288. doi: 10.1073/pnas.75.1.285. [DOI] [PMC free article] [PubMed] [Google Scholar]
  46. Tomizawa J. Control of ColE1 plasmid replication: the process of binding of RNA I to the primer transcript. Cell. 1984 Oct;38(3):861–870. doi: 10.1016/0092-8674(84)90281-2. [DOI] [PubMed] [Google Scholar]
  47. Trapnell B. C. Quantitative evaluation of gene expression in freshly isolated human respiratory epithelial cells. Am J Physiol. 1993 Mar;264(3 Pt 1):L199–L212. doi: 10.1152/ajplung.1993.264.3.L199. [DOI] [PubMed] [Google Scholar]
  48. Weerasinghe M., Liem S. E., Asad S., Read S. E., Joshi S. Resistance to human immunodeficiency virus type 1 (HIV-1) infection in human CD4+ lymphocyte-derived cell lines conferred by using retroviral vectors expressing an HIV-1 RNA-specific ribozyme. J Virol. 1991 Oct;65(10):5531–5534. doi: 10.1128/jvi.65.10.5531-5534.1991. [DOI] [PMC free article] [PubMed] [Google Scholar]
  49. Wickstrom E. Strategies for administering targeted therapeutic oligodeoxynucleotides. Trends Biotechnol. 1992 Aug;10(8):281–287. doi: 10.1016/0167-7799(92)90245-q. [DOI] [PubMed] [Google Scholar]
  50. Yamada O., Kraus G., Leavitt M. C., Yu M., Wong-Staal F. Activity and cleavage site specificity of an anti-HIV-1 hairpin ribozyme in human T cells. Virology. 1994 Nov 15;205(1):121–126. doi: 10.1006/viro.1994.1626. [DOI] [PubMed] [Google Scholar]
  51. Yamada O., Yu M., Yee J. K., Kraus G., Looney D., Wong-Staal F. Intracellular immunization of human T cells with a hairpin ribozyme against human immunodeficiency virus type 1. Gene Ther. 1994 Jan;1(1):38–45. [PubMed] [Google Scholar]
  52. Yu M., Ojwang J., Yamada O., Hampel A., Rapapport J., Looney D., Wong-Staal F. A hairpin ribozyme inhibits expression of diverse strains of human immunodeficiency virus type 1. Proc Natl Acad Sci U S A. 1993 Jul 1;90(13):6340–6344. doi: 10.1073/pnas.90.13.6340. [DOI] [PMC free article] [PubMed] [Google Scholar]
  53. Yu M., Poeschla E., Yamada O., Degrandis P., Leavitt M. C., Heusch M., Yees J. K., Wong-Staal F., Hampel A. In vitro and in vivo characterization of a second functional hairpin ribozyme against HIV-1. Virology. 1995 Jan 10;206(1):381–386. doi: 10.1016/s0042-6822(95)80053-0. [DOI] [PubMed] [Google Scholar]
  54. Zamecnik P. C., Stephenson M. L. Inhibition of Rous sarcoma virus replication and cell transformation by a specific oligodeoxynucleotide. Proc Natl Acad Sci U S A. 1978 Jan;75(1):280–284. doi: 10.1073/pnas.75.1.280. [DOI] [PMC free article] [PubMed] [Google Scholar]
  55. Zuker M., Stiegler P. Optimal computer folding of large RNA sequences using thermodynamics and auxiliary information. Nucleic Acids Res. 1981 Jan 10;9(1):133–148. doi: 10.1093/nar/9.1.133. [DOI] [PMC free article] [PubMed] [Google Scholar]

Articles from Journal of Virology are provided here courtesy of American Society for Microbiology (ASM)

RESOURCES