Skip to main content
The American Journal of Pathology logoLink to The American Journal of Pathology
. 1984 Oct;117(1):140–153.

Evaluation of free radical effects and catecholamine alterations in adriamycin cardiotoxicity.

J A Jackson, J P Reeves, K H Muntz, D Kruk, R A Prough, J T Willerson, L M Buja
PMCID: PMC1900556  PMID: 6486242

Abstract

With the goal of evaluating the potential roles of free radicals and catecholamines in the pathogenesis of acute and chronic Adriamycin (ADR) cardiotoxicity, evidence was sought for myocardial free radical toxicity and alterations in myocardial catecholamine levels after acute and chronic administration of ADR to rabbits. In acute studies, male New Zealand white rabbits received intravenous ADR, 1.1 or 5 mg/kg per day for 1 or 3 days or 10 mg/kg for 1 day and were sacrificed 3-72 hours later. Because the glutathione-glutathione peroxidase system is a major pathway for free radical detoxification, glutathione levels and glutathione peroxidase activity were measured. In the acute studies, ADR-treated rabbits exhibited significantly increased levels (up to 50%) of total and reduced glutathione, unchanged levels of oxidized glutathione, and a slight decrease in the percentage of oxidized glutathione. Major effects of dose and sacrifice interval were not observed. However, in animals receiving three injections of 5 mg/kg or one injection of 10 mg/kg ADR, myocytes exhibited fine vacuolization, due to lipid accumulation and dilatation of the sarcoplasmic reticulum, without evidence of coagulation necrosis. In the chronic study, rabbits received 1.1 mg/kg ADR twice weekly for up to 10 weeks. Levels of total and reduced glutathione were increased significantly by 23-36% after 9-12 and 16-20 injections without change in the percentage of oxidized glutathione. The mean percentage of myocytes with vacuolar-myofibrillar degeneration, the characteristic lesion of chronic ADR cardiotoxicity, was 0 after 5-7 injections, 3.3 after 9-12 injection, and 17.2 after 16-20 injections. Glutathione peroxidase activity was not reduced significantly in any group of acute or chronic ADR-treated animals. Tests for lipid peroxidation (malondialdehyde and ethane production) were negative in acute studies. Myocardial catecholamine levels were unchanged in acute and chronic ADR animals. Thus, the cardiac glutathione-glutathione peroxidase system is activated with ADR treatment at the onset of cellular damage, and cellular damage progresses without further alteration of this system, loss of glutathione peroxidase activity, or reduction in myocardial catecholamines in rabbit models of ADR cardiotoxicity. These findings suggest that free radical generation in the heart may contribute to ADR cardiotoxicity, but that other factors probably play a more important role in the pathogenesis of the myocardial damage.

Full text

PDF
140

Images in this article

Selected References

These references are in PubMed. This may not be the complete list of references from this article.

  1. Bachur N. R., Gee M. V., Friedman R. D. Nuclear catalyzed antibiotic free radical formation. Cancer Res. 1982 Mar;42(3):1078–1081. [PubMed] [Google Scholar]
  2. Bachur N. R., Gordon S. L., Gee M. V. A general mechanism for microsomal activation of quinone anticancer agents to free radicals. Cancer Res. 1978 Jun;38(6):1745–1750. [PubMed] [Google Scholar]
  3. Blum R. H., Carter S. K. Adriamycin. A new anticancer drug with significant clinical activity. Ann Intern Med. 1974 Feb;80(2):249–259. doi: 10.7326/0003-4819-80-2-249. [DOI] [PubMed] [Google Scholar]
  4. Boor P. J. Cardiac glutathione: diurnal rhythm and variation in drug-induced cardiomyopathy. Res Commun Chem Pathol Pharmacol. 1979 Apr;24(1):27–36. [PubMed] [Google Scholar]
  5. Bristow M. R., Minobe W. A., Billingham M. E., Marmor J. B., Johnson G. A., Ishimoto B. M., Sageman W. S., Daniels J. R. Anthracycline-associated cardiac and renal damage in rabbits. Evidence for mediation by vasoactive substances. Lab Invest. 1981 Aug;45(2):157–168. [PubMed] [Google Scholar]
  6. Bristow M. R., Sageman W. S., Scott R. H., Billingham M. E., Bowden R. E., Kernoff R. S., Snidow G. H., Daniels J. R. Acute and chronic cardiovascular effects of doxorubicin in the dog: the cardiovascular pharmacology of drug-induced histamine release. J Cardiovasc Pharmacol. 1980 Sep-Oct;2(5):487–515. doi: 10.1097/00005344-198009000-00002. [DOI] [PubMed] [Google Scholar]
  7. Bristow M. R., Thompson P. D., Martin R. P., Mason J. W., Billingham M. E., Harrison D. C. Early anthracycline cardiotoxicity. Am J Med. 1978 Nov;65(5):823–832. doi: 10.1016/0002-9343(78)90802-1. [DOI] [PubMed] [Google Scholar]
  8. Buja L. M., Ferrans V. J., Mayer R. J., Roberts W. C., Henderson E. S. Cardiac ultrastructural changes induced by daunorubicin therapy. Cancer. 1973 Oct;32(4):771–788. doi: 10.1002/1097-0142(197310)32:4<771::aid-cncr2820320407>3.0.co;2-a. [DOI] [PubMed] [Google Scholar]
  9. Buja L. M., Ferrans V. J., Rabson A. S. Letter: Unusual nuclear alterations. Lancet. 1974 Mar 9;1(7854):402–403. doi: 10.1016/s0140-6736(74)93164-x. [DOI] [PubMed] [Google Scholar]
  10. Burk R. F., Lawrence R. A., Lane J. M. Liver necrosis and lipid peroxidation in the rat as the result of paraquat and diquat administration. Effect of selenium deficiency. J Clin Invest. 1980 May;65(5):1024–1031. doi: 10.1172/JCI109754. [DOI] [PMC free article] [PubMed] [Google Scholar]
  11. CHIDSEY C. A., BRAUNWALD E., MORROW A. G., MASON D. T. MYOCARDIAL NOREPINEPHRINE CONCENTRATION IN MAN. EFFECTS OF RESERPINE AND OF CONGESTIVE HEART FAILURE. N Engl J Med. 1963 Sep 26;269:653–658. doi: 10.1056/NEJM196309262691302. [DOI] [PubMed] [Google Scholar]
  12. Caroni P., Villani F., Carafoli E. The cardiotoxic antibiotic doxorubicin inhibits the Na+/Ca2+ exchange of dog heart sarcolemmal vesicles. FEBS Lett. 1981 Aug 3;130(2):184–186. doi: 10.1016/0014-5793(81)81115-5. [DOI] [PubMed] [Google Scholar]
  13. Chalcroft S. C., Gavin J. B., Herdson P. B. Fine structural changes in rat myocardium induced by daunorubicin. Pathology. 1973 Apr;5(2):99–105. doi: 10.3109/00313027309060824. [DOI] [PubMed] [Google Scholar]
  14. Chatelain P., Berliner C., Ruysschaert J. M., Jaffé J. Effect of a diazafluoranthen derivative on phospholipases. A study at the air-water interface. Biochim Biophys Acta. 1976 Feb 6;419(3):540–546. doi: 10.1016/0005-2736(76)90264-9. [DOI] [PubMed] [Google Scholar]
  15. D'Alessandro N., Dusonchet L., Crosta L., Crescimanno M., Rausa L. Does catalase play a role in adriamycin induced cardiotoxicity? Pharmacol Res Commun. 1980 May;12(5):441–446. doi: 10.1016/s0031-6989(80)80114-7. [DOI] [PubMed] [Google Scholar]
  16. Da Prada M., Zürcher Simultaneous radioenzymatic determination of plasma and tissue adrenaline, noradrenaline and dopamine within the femtomole range. Life Sci. 1976 Oct 15;19(8):1161–1174. doi: 10.1016/0024-3205(76)90251-4. [DOI] [PubMed] [Google Scholar]
  17. Doroshow J. H. Effect of anthracycline antibiotics on oxygen radical formation in rat heart. Cancer Res. 1983 Feb;43(2):460–472. [PubMed] [Google Scholar]
  18. Doroshow J. H., Locker G. Y., Ifrim I., Myers C. E. Prevention of doxorubicin cardiac toxicity in the mouse by N-acetylcysteine. J Clin Invest. 1981 Oct;68(4):1053–1064. doi: 10.1172/JCI110328. [DOI] [PMC free article] [PubMed] [Google Scholar]
  19. Doroshow J. H., Locker G. Y., Myers C. E. Enzymatic defenses of the mouse heart against reactive oxygen metabolites: alterations produced by doxorubicin. J Clin Invest. 1980 Jan;65(1):128–135. doi: 10.1172/JCI109642. [DOI] [PMC free article] [PubMed] [Google Scholar]
  20. Dumelin E. E., Tappel A. L. Hydrocarbon gases produced during in vitro peroxidation of polyunsaturated fatty acids and decomposition of preformed hydroperoxides. Lipids. 1977 Nov;12(11):894–900. doi: 10.1007/BF02533308. [DOI] [PubMed] [Google Scholar]
  21. Ferrans V. J. Overview of cardiac pathology in relation to anthracycline cardiotoxicity. Cancer Treat Rep. 1978 Jun;62(6):955–961. [PubMed] [Google Scholar]
  22. Ferrero M. E., Ferrero E., Gaja G., Bernelli-Zazzera A. Adriamycin: energy metabolism and mitochondrial oxidations in the heart of treated rabbits. Biochem Pharmacol. 1976 Jan 15;25(2):125–130. doi: 10.1016/0006-2952(76)90278-1. [DOI] [PubMed] [Google Scholar]
  23. Fujita K., Shinpo K., Yamada K., Sato T., Niimi H., Shamoto M., Nagatsu T., Takeuchi T., Umezawa H. Reduction of adriamycin toxicity by ascorbate in mice and guinea pigs. Cancer Res. 1982 Jan;42(1):309–316. [PubMed] [Google Scholar]
  24. Goormaghtigh E., Chatelain P., Caspers J., Ruysschaert J. M. Evidence of a specific complex between adriamycin and negatively-charged phospholipids. Biochim Biophys Acta. 1980 Mar 27;597(1):1–14. doi: 10.1016/0005-2736(80)90145-5. [DOI] [PubMed] [Google Scholar]
  25. Gosálvez M., van Rossum G. D., Blanco M. F. Inhibition of sodium-potassium-activated adenosine 5'-triphosphatase and ion transport by adriamycin. Cancer Res. 1979 Jan;39(1):257–261. [PubMed] [Google Scholar]
  26. Griffith O. W. Determination of glutathione and glutathione disulfide using glutathione reductase and 2-vinylpyridine. Anal Biochem. 1980 Jul 15;106(1):207–212. doi: 10.1016/0003-2697(80)90139-6. [DOI] [PubMed] [Google Scholar]
  27. Herman E. H., Ferrans V. J. Influence of vitamin E and ICRF-187 on chronic doxorubicin cardiotoxicity in miniature swine. Lab Invest. 1983 Jul;49(1):69–77. [PubMed] [Google Scholar]
  28. Jaenke R. S. An anthracycline antibiotic-induced cardiomyopathy in rabbits. Lab Invest. 1974 Mar;30(3):292–304. [PubMed] [Google Scholar]
  29. Jaenke R. S. Delayed and progressive myocardial lesions after adriamycin administration in the rabbit. Cancer Res. 1976 Aug;36(8):2958–2966. [PubMed] [Google Scholar]
  30. Lambertenghi-Deliliers G., Zanon P. L., Pozzoli E. F., Bellini O. Myocardial injury induced by a single dose of adriamycin: an electron microscopic study. Tumori. 1976 Sep-Oct;62(5):517–528. doi: 10.1177/030089167606200506. [DOI] [PubMed] [Google Scholar]
  31. Lefrak E. A., Pitha J., Rosenheim S., Gottlieb J. A. A clinicopathologic analysis of adriamycin cardiotoxicity. Cancer. 1973 Aug;32(2):302–314. doi: 10.1002/1097-0142(197308)32:2<302::aid-cncr2820320205>3.0.co;2-2. [DOI] [PubMed] [Google Scholar]
  32. Lenaz L., Page J. A. Cardiotoxicity of adriamycin and related anthracyclines. Cancer Treat Rev. 1976 Sep;3(3):111–120. doi: 10.1016/s0305-7372(76)80018-7. [DOI] [PubMed] [Google Scholar]
  33. Lewis W., Kleinerman J., Puszkin S. Interaction of adriamycin in vitro with cardiac myofibrillar proteins. Circ Res. 1982 Apr;50(4):547–553. doi: 10.1161/01.res.50.4.547. [DOI] [PubMed] [Google Scholar]
  34. Little C., Olinescu R., Reid K. G., O'Brien P. J. Properties and regulation of glutathione peroxidase. J Biol Chem. 1970 Jul 25;245(14):3632–3636. [PubMed] [Google Scholar]
  35. Merski J., Daskal Y., Busch H. Comparison of adriamycin-induced nucleolar segregation in skeletal muscle, cardiac muscle, and liver cells. Cancer Treat Rep. 1978 May;62(5):771–778. [PubMed] [Google Scholar]
  36. Mimnaugh E. G., Gram T. E., Trush M. A. Stimulation of mouse heart and liver microsomal lipid peroxidation by anthracycline anticancer drugs: characterization and effects of reactive oxygen scavengers. J Pharmacol Exp Ther. 1983 Sep;226(3):806–816. [PubMed] [Google Scholar]
  37. Mimnaugh E. G., Trush M. A., Ginsburg E., Gram T. E. Differential effects of anthracycline drugs on rat heart and liver microsomal reduced nicotinamide adenine dinucleotide phosphate-dependent lipid peroxidation. Cancer Res. 1982 Sep;42(9):3574–3582. [PubMed] [Google Scholar]
  38. Muntz K. H., Hagler H. K., Boulas H. J., Willerson J. T., Buja L. M. Redistribution of catecholamines in the ischemic zone of the dog heart. Am J Pathol. 1984 Jan;114(1):64–78. [PMC free article] [PubMed] [Google Scholar]
  39. Myers C. E., McGuire W. P., Liss R. H., Ifrim I., Grotzinger K., Young R. C. Adriamycin: the role of lipid peroxidation in cardiac toxicity and tumor response. Science. 1977 Jul 8;197(4299):165–167. doi: 10.1126/science.877547. [DOI] [PubMed] [Google Scholar]
  40. Olson H. M., Capen C. C. Subacute cardiotoxicity of adriamycin in the rat: biochemical and ultrastructural investigations. Lab Invest. 1977 Oct;37(4):386–394. [PubMed] [Google Scholar]
  41. Olson H. M., Young D. M., Prieur D. J., LeRoy A. F., Reagan R. L. Electrolyte and morphologic alterations of myocardium in adriamycin-treated rabbits. Am J Pathol. 1974 Dec;77(3):439–454. [PMC free article] [PubMed] [Google Scholar]
  42. Olson R. D., MacDonald J. S., vanBoxtel C. J., Boerth R. C., Harbison R. D., Slonim A. E., Freeman R. W., Oates J. A. Regulatory role of glutathione and soluble sulfhydryl groups in the toxicity of adriamycin. J Pharmacol Exp Ther. 1980 Nov;215(2):450–454. [PubMed] [Google Scholar]
  43. Prough R. A., Stalmach M. A., Wiebkin P., Bridges J. W. The microsomal metabolism of the organometallic derivatives of the group-IV elements, germanium, tin and lead. Biochem J. 1981 Jun 15;196(3):763–770. doi: 10.1042/bj1960763. [DOI] [PMC free article] [PubMed] [Google Scholar]
  44. REGISTER U. D., BARTLETT R. G., Jr Relationship of adrenalin to tissue sulfhydryl compounds. Science. 1954 Jul 16;120(3107):109–110. doi: 10.1126/science.120.3107.109. [DOI] [PubMed] [Google Scholar]
  45. Rao K. S., Recknagel R. O. Early onset of lipoperoxidation in rat liver after carbon tetrachloride administration. Exp Mol Pathol. 1968 Oct;9(2):271–278. doi: 10.1016/0014-4800(68)90041-5. [DOI] [PubMed] [Google Scholar]
  46. Rechnagel R. O., Glende E. A., Jr Carbon tetrachloride hepatotoxicity: an example of lethal cleavage. CRC Crit Rev Toxicol. 1973 Nov;2(3):263–297. doi: 10.3109/10408447309082019. [DOI] [PubMed] [Google Scholar]
  47. Revis N. W., Marusic N. Glutathione peroxidase activity and selenium concentration in the hearts of doxorubicin-treated rabbits. J Mol Cell Cardiol. 1978 Oct;10(10):945–951. doi: 10.1016/0022-2828(78)90340-1. [DOI] [PubMed] [Google Scholar]
  48. Riely C. A., Cohen G., Lieberman M. Ethane evolution: a new index of lipid peroxidation. Science. 1974 Jan 18;183(4121):208–210. doi: 10.1126/science.183.4121.208. [DOI] [PubMed] [Google Scholar]
  49. Rosenoff S. H., Olson H. M., Young D. M., Bostick F., Young R. C. Adriamycin-induced cardiac damage in the mouse: a small-animal model of cardiotoxicity. J Natl Cancer Inst. 1975 Jul;55(1):191–194. doi: 10.1093/jnci/55.1.191. [DOI] [PubMed] [Google Scholar]
  50. Taylor A. L., Bulkley B. H. Acute adriamycin cardiotoxicity: morphologic alterations in isolated perfused rabbit heart. Lab Invest. 1982 Nov;47(5):459–464. [PubMed] [Google Scholar]
  51. Thayer W. S. Adriamycin stimulated superoxide formation in submitochondrial particles. Chem Biol Interact. 1977 Dec;19(3):265–278. doi: 10.1016/0009-2797(77)90050-3. [DOI] [PubMed] [Google Scholar]
  52. Tietze F. Enzymic method for quantitative determination of nanogram amounts of total and oxidized glutathione: applications to mammalian blood and other tissues. Anal Biochem. 1969 Mar;27(3):502–522. doi: 10.1016/0003-2697(69)90064-5. [DOI] [PubMed] [Google Scholar]
  53. Tritton T. R., Murphree S. A., Sartorelli A. C. Adriamycin: a proposal on the specificity of drug action. Biochem Biophys Res Commun. 1978 Oct 16;84(3):802–808. doi: 10.1016/0006-291x(78)90775-1. [DOI] [PubMed] [Google Scholar]
  54. Unverferth D. V., Magorien R. D., Unverferth B. P., Talley R. L., Balcerzak S. P., Baba N. Human myocardial morphologic and functional changes in the first 24 hours after doxorubicin administration. Cancer Treat Rep. 1981 Nov-Dec;65(11-12):1093–1097. [PubMed] [Google Scholar]
  55. Van Vleet J. F., Ferrans V. J., Weirich W. E. Cardiac disease induced by chronic adriamycin administration in dogs and an evaluation of vitamin E and selenium as cardioprotectants. Am J Pathol. 1980 Apr;99(1):13–42. [PMC free article] [PubMed] [Google Scholar]
  56. Van Vleet J. F., Greenwood L., Ferrans V. J., Rebar A. H. Effect of selenium-vitamin E on adriamycin-induced cardiomyopathy in rabbits. Am J Vet Res. 1978 Jun;39(6):997–1010. [PubMed] [Google Scholar]
  57. Von Hoff D. D., Layard M. W., Basa P., Davis H. L., Jr, Von Hoff A. L., Rozencweig M., Muggia F. M. Risk factors for doxorubicin-induced congestive heart failure. Ann Intern Med. 1979 Nov;91(5):710–717. doi: 10.7326/0003-4819-91-5-710. [DOI] [PubMed] [Google Scholar]

Articles from The American Journal of Pathology are provided here courtesy of American Society for Investigative Pathology

RESOURCES