Skip to main content
The American Journal of Pathology logoLink to The American Journal of Pathology
. 1984 Oct;117(1):1–11.

Detection of autoantibodies and glomerular injury in rabbits immunized with denatured human fibronectin monomer.

J E Murphy-Ullrich, T D Oberley, D F Mosher
PMCID: PMC1900564  PMID: 6207732

Abstract

Seven rabbits were studied after immunization with human plasma fibronectin which had been purified by preparative sodium dodecyl sulfate-polyacrylamide slab gel electrophoresis run after reduction. Light- and electron-microscopic examination of kidneys revealed proliferative mesangial and capillary alterations in all of the rabbits immunized with fibronectin, but not in the rabbits immunized with fibrinogen or saline. In addition, one of the rabbits (Rabbit 4) also demonstrated dense deposits in a unique distribution within the glomerular basement membrane. Granular staining for rabbit IgG was present in the mesangium and along the basement membranes of the capillary loops of glomeruli from Rabbit 4 as detected by immunohistochemical methods. Sera from all of the rabbits immunized with human fibronectin contained IgG antibodies that reacted with rabbit fibronectin when tested by the Western blotting method. Preimmune sera and sera from rabbits immunized with fibrinogen or saline recognized neither human nor rabbit fibronectin. Although antibodies from several of the rabbits reacted with the 27,000-dalton, aminoterminal fragments of human fibronectin by the Western blotting method, only antibodies from Rabbit 4 recognized the 27,000-dalton fragment of rabbit fibronectin. These studies indicate that antibodies which recognize fibronectin of the host species and which are involved in the pathogenesis of glomerular injury can be induced by immunization with denatured heterologous fibronectin monomer.

Full text

PDF
1

Images in this article

Selected References

These references are in PubMed. This may not be the complete list of references from this article.

  1. Akiyama S. K., Yamada K. M., Hayashi M. The structure of fibronectin and its role in cellular adhesion. J Supramol Struct Cell Biochem. 1981;16(4):345–348. doi: 10.1002/jsscb.1981.380160405. [DOI] [PubMed] [Google Scholar]
  2. Atherton B. T., Hynes R. O. A difference between plasma and cellular fibronectins located with monoclonal antibodies. Cell. 1981 Jul;25(1):133–141. doi: 10.1016/0092-8674(81)90237-3. [DOI] [PubMed] [Google Scholar]
  3. Atherton B. T., Taylor D. M., Hynes R. O. Structural analysis of fibronectin with monoclonal antibodies. J Supramol Struct Cell Biochem. 1981;17(2):153–161. doi: 10.1002/jsscb.380170206. [DOI] [PubMed] [Google Scholar]
  4. Blumenstock F. A., Saba T. M., Weber P., Laffin R. Biochemical and immunological characterization of human opsonic alpha2SB glycoprotein: its identity with cold-insoluble globulin. J Biol Chem. 1978 Jun 25;253(12):4287–4291. [PubMed] [Google Scholar]
  5. Courtoy P. J., Kanwar Y. S., Hynes R. O., Farquhar M. G. Fibronectin localization in the rat glomerulus. J Cell Biol. 1980 Dec;87(3 Pt 1):691–696. doi: 10.1083/jcb.87.3.691. [DOI] [PMC free article] [PubMed] [Google Scholar]
  6. Fish A. J., Michael A. F., Vernier R. L., Good R. A. Acute serum sickness nephritis in the rabbit. An immune deposit disease. Am J Pathol. 1966 Dec;49(6):997–1022. [PMC free article] [PubMed] [Google Scholar]
  7. Garcia-Pardo A., Pearlstein E., Frangione B. Primary structure of human plasma fibronectin. The 29,000-dalton NH2-terminal domain. J Biol Chem. 1983 Oct 25;258(20):12670–12674. [PubMed] [Google Scholar]
  8. Grinnell F. Fibronectin and wound healing. Am J Dermatopathol. 1982 Apr;4(2):185–188. doi: 10.1097/00000372-198204000-00014. [DOI] [PubMed] [Google Scholar]
  9. Hahn E., Nowack H., GOTZE D., Timpl R. H-2-linked genetic control of antibody response to soluble calf skin collagen in mice. Eur J Immunol. 1975 Apr;5(4):288–291. doi: 10.1002/eji.1830050415. [DOI] [PubMed] [Google Scholar]
  10. Hayashi M., Yamada K. M. Differences in domain structures between plasma and cellular fibronectins. J Biol Chem. 1981 Nov 10;256(21):11292–11300. [PubMed] [Google Scholar]
  11. Hynes R. O., Yamada K. M. Fibronectins: multifunctional modular glycoproteins. J Cell Biol. 1982 Nov;95(2 Pt 1):369–377. doi: 10.1083/jcb.95.2.369. [DOI] [PMC free article] [PubMed] [Google Scholar]
  12. Laemmli U. K. Cleavage of structural proteins during the assembly of the head of bacteriophage T4. Nature. 1970 Aug 15;227(5259):680–685. doi: 10.1038/227680a0. [DOI] [PubMed] [Google Scholar]
  13. Lazarides E. Two general classes of cytoplasmic actin filaments in tissue culture cells: the role of tropomyosin. J Supramol Struct. 1976;5(4):531(383)–563(415). doi: 10.1002/jss.400050410. [DOI] [PubMed] [Google Scholar]
  14. Madri J. A., Roll F. J., Furthmayr H., Foidart J. M. Ultrastructural localization of fibronectin and laminin in the basement membranes of the murine kidney. J Cell Biol. 1980 Aug;86(2):682–687. doi: 10.1083/jcb.86.2.682. [DOI] [PMC free article] [PubMed] [Google Scholar]
  15. Martinez-Hernandez A., Marsh C. A., Clark C. C., Macarak E. J., Brownell A. G. Fibronectin: its relationship to basement membranes. II. Ultrastructural studies in rat kidney. Coll Relat Res. 1981 Sep;1(5):405–418. doi: 10.1016/s0174-173x(81)80025-8. [DOI] [PubMed] [Google Scholar]
  16. Mosher D. F. Cross-linking of cold-insoluble globulin by fibrin-stabilizing factor. J Biol Chem. 1975 Aug 25;250(16):6614–6621. [PubMed] [Google Scholar]
  17. Mosher D. F., Johnson R. B. In vitro formation of disulfide-bonded fibronectin multimers. J Biol Chem. 1983 May 25;258(10):6595–6601. [PubMed] [Google Scholar]
  18. Mosher D. F., Proctor R. A. Binding and factor XIIIa-mediated cross-linking of a 27-kilodalton fragment of fibronectin to Staphylococcus aureus. Science. 1980 Aug 22;209(4459):927–929. doi: 10.1126/science.7403857. [DOI] [PubMed] [Google Scholar]
  19. Murphy-Ullrich J. E., Oberley T. D., Mosher D. F. Glomerular and vascular injury in mice following immunization with heterologous and autologous fibronectin. Virchows Arch B Cell Pathol Incl Mol Pathol. 1982;39(3):305–321. doi: 10.1007/BF02892857. [DOI] [PubMed] [Google Scholar]
  20. Oh E., Pierschbacher M., Ruoslahti E. Deposition of plasma fibronectin in tissues. Proc Natl Acad Sci U S A. 1981 May;78(5):3218–3221. doi: 10.1073/pnas.78.5.3218. [DOI] [PMC free article] [PubMed] [Google Scholar]
  21. Petersen T. E., Thøgersen H. C., Skorstengaard K., Vibe-Pedersen K., Sahl P., Sottrup-Jensen L., Magnusson S. Partial primary structure of bovine plasma fibronectin: three types of internal homology. Proc Natl Acad Sci U S A. 1983 Jan;80(1):137–141. doi: 10.1073/pnas.80.1.137. [DOI] [PMC free article] [PubMed] [Google Scholar]
  22. Rennard S. I., Berg R., Martin G. R., Foidart J. M., Robey P. G. Enzyme-linked immunoassay (ELISA) for connective tissue components. Anal Biochem. 1980 May 1;104(1):205–214. doi: 10.1016/0003-2697(80)90300-0. [DOI] [PubMed] [Google Scholar]
  23. Ruoslahti E., Engvall E., Hayman E. G. Fibronectin: current concepts of its structure and functions. Coll Relat Res. 1981;1(1):95–128. doi: 10.1016/s0174-173x(80)80011-2. [DOI] [PubMed] [Google Scholar]
  24. Schwarzbauer J. E., Tamkun J. W., Lemischka I. R., Hynes R. O. Three different fibronectin mRNAs arise by alternative splicing within the coding region. Cell. 1983 Dec;35(2 Pt 1):421–431. doi: 10.1016/0092-8674(83)90175-7. [DOI] [PubMed] [Google Scholar]
  25. Stenman S., Vaheri A. Distribution of a major connective tissue protein, fibronectin, in normal human tissues. J Exp Med. 1978 Apr 1;147(4):1054–1064. doi: 10.1084/jem.147.4.1054. [DOI] [PMC free article] [PubMed] [Google Scholar]
  26. Tooney N. M., Amrani D. L., Homandberg G. A., McDonald J. A., Mosesson M. W. Near ultraviolet circular dichroism spectroscopy of plasma fibronectin and fibronectin fragments. Biochem Biophys Res Commun. 1982 Oct 15;108(3):1085–1091. doi: 10.1016/0006-291x(82)92111-8. [DOI] [PubMed] [Google Scholar]
  27. Towbin H., Staehelin T., Gordon J. Electrophoretic transfer of proteins from polyacrylamide gels to nitrocellulose sheets: procedure and some applications. Proc Natl Acad Sci U S A. 1979 Sep;76(9):4350–4354. doi: 10.1073/pnas.76.9.4350. [DOI] [PMC free article] [PubMed] [Google Scholar]
  28. Unanue E. R., Dixon F. J. Experimental allergic glomerulonephritis induced in the rabbit with heterologous renal antigens. J Exp Med. 1967 Jan 1;125(1):149–162. doi: 10.1084/jem.125.1.149. [DOI] [PMC free article] [PubMed] [Google Scholar]
  29. Unanue E. R., Dixon F. J., Feldman J. D. Experimental allergic glomerulonephritis induced in the rabbit with homologous renal antigens. J Exp Med. 1967 Jan 1;125(1):163–176. doi: 10.1084/jem.125.1.163. [DOI] [PMC free article] [PubMed] [Google Scholar]
  30. Vartio T., Zardi L., Balza E., Towbin H., Vaheri A. Monoclonal antibodies in analysis of cathepsin G-digested proteolytic fragments of human plasma fibronectin. J Immunol Methods. 1982 Dec 30;55(3):309–318. doi: 10.1016/0022-1759(82)90090-4. [DOI] [PubMed] [Google Scholar]
  31. Wick G., Müller P. U., Timpl R. In vivo localization and pathological effects of passively transferred antibodies to type IV collagen and laminin in mice. Clin Immunol Immunopathol. 1982 Jun;23(3):656–665. doi: 10.1016/0090-1229(82)90328-2. [DOI] [PubMed] [Google Scholar]
  32. Williams E. C., Janmey P. A., Ferry J. D., Mosher D. F. Conformational states of fibronectin. Effects of pH, ionic strength, and collagen binding. J Biol Chem. 1982 Dec 25;257(24):14973–14978. [PubMed] [Google Scholar]
  33. Yam L. T., Li C. Y., Crosby W. H. Cytochemical identification of monocytes and granulocytes. Am J Clin Pathol. 1971 Mar;55(3):283–290. doi: 10.1093/ajcp/55.3.283. [DOI] [PubMed] [Google Scholar]

Articles from The American Journal of Pathology are provided here courtesy of American Society for Investigative Pathology

RESOURCES