Skip to main content
The American Journal of Pathology logoLink to The American Journal of Pathology
. 1984 Dec;117(3):418–428.

Fibrin-mediated vascular injury. Identification of fibrin peptides that mediate endothelial cell retraction.

F N Rowland, M J Donovan, P T Picciano, G D Wilner, D L Kreutzer
PMCID: PMC1900580  PMID: 6507588

Abstract

The deposition of fibrin, a ubiquitous component of acute and chronic inflammatory reactions, has been implicated by a number of recent studies as playing an active role in inflammation. In particular, fibrin deposition has been implicated in the development of tissue edema. As the "gateway" through which intravascular-to-extravascular movement of fluid, nutrients, and cells must pass, the vascular endothelial cells play a crucial regulatory role in this process. In support of this concept, recent studies in this laboratory have demonstrated that endothelial cells retract not only in the presence of fibrin but also in the presence of low molecular weight cleavage products of fibrinogen. It was further shown that this reaction was 1) specific for both vascular and corneal endothelial cells, 2) nontoxic, and 3) completely reversible. The present work examined the physiochemical nature of these endothelial-cell reactive factors. It was demonstrated by the use of enzymatically derived and synthetic fibrinogen peptides, that the active soluble fibrinogen-derived factor was associated with the amino-terminal end of the B chain of fibrinogen. The active factor has been tentatively identified as the B beta peptides, which is a primary plasmin cleavage product of fibrinogen and contains the thrombin-generated fibrinopeptide B. It is thus suggested that soluble, endothelial-cell-reactive peptides are released during both fibrinogenesis and fibrinolysis and, as such, modulate endothelial cell functions in vivo.

Full text

PDF
418

Selected References

These references are in PubMed. This may not be the complete list of references from this article.

  1. Accinni L., Dixon F. J. Degenerative vascular disease and myocardial infarction in mice with lupus-like syndrome. Am J Pathol. 1979 Aug;96(2):477–492. [PMC free article] [PubMed] [Google Scholar]
  2. Belew M., Gerdin B., Lindeberg G., Porath J., Saldeen T., Wallin R. Structure-activity relationships of vasoactive peptides derived from fibrin or fibrinogen degraded by plasmin. Biochim Biophys Acta. 1980 Feb 27;621(2):169–178. doi: 10.1016/0005-2795(80)90169-5. [DOI] [PubMed] [Google Scholar]
  3. Belew M., Gerdin B., Porath J., Saldeen T. Isolation of vasoactive peptides from human fibrin and fibrinogen degraded by plasmin. Thromb Res. 1978 Dec;13(6):983–994. doi: 10.1016/0049-3848(78)90227-x. [DOI] [PubMed] [Google Scholar]
  4. Buczko W., de Gaetano G., Franco R., Donati M. B. Biological properties of dialysable peptides derived from plasmin digestion of bovine fibrinogen preparations. Thromb Haemost. 1976 Jun 30;35(3):651–657. [PubMed] [Google Scholar]
  5. Budzynski A. Z., Marder V. J., Shainoff J. R. Structure of plasmic degradation products of human fibrinogen. Fibrinopeptide and polypeptide chain analysis. J Biol Chem. 1974 Apr 10;249(7):2294–2302. [PubMed] [Google Scholar]
  6. Busch C., Gerdin B. Effect of low molecular weight fibrin degradation products on endothelial cells in culture. Thromb Res. 1981 Apr 1;22(1-2):33–39. doi: 10.1016/0049-3848(81)90306-6. [DOI] [PubMed] [Google Scholar]
  7. Cohen S., Benacerraf B., McCluskey R. T., Ovary Z. Effect of anticoagulants on delayed hypersensitivity reactions. J Immunol. 1967 Feb;98(2):351–358. [PubMed] [Google Scholar]
  8. Colvin R. B., Dvorak H. F. Role of the clotting system in cell-mediated hypersensitivity. II. Kinetics of fibrinogen/fibrin accumulation and vascular permeability changes in tuberculin and cutaneous basophil hypersensitivity reactions. J Immunol. 1975 Jan;114(1 Pt 2):377–387. [PubMed] [Google Scholar]
  9. Colvin R. B., Johnson R. A., Mihm M. C., Jr, Dvorak H. F. Role of the clotting system in cell-mediated hypersensitivity. I. Fibrin deposition in delayed skin reactions in man. J Exp Med. 1973 Sep 1;138(3):686–698. doi: 10.1084/jem.138.3.686. [DOI] [PMC free article] [PubMed] [Google Scholar]
  10. Colvin R. B., Mosesson M. W., Dvorak H. F. Delayed-type hypersensitivity skin reactions in congenital afibrinogenemia lack fibrin deposition and induration. J Clin Invest. 1979 Jun;63(6):1302–1306. doi: 10.1172/JCI109425. [DOI] [PMC free article] [PubMed] [Google Scholar]
  11. Edwards R. L., Rickles F. R. Delayed hypersensitivity in man: effects of systemic anticoagulation. Science. 1978 May 5;200(4341):541–543. doi: 10.1126/science.644314. [DOI] [PubMed] [Google Scholar]
  12. Furlan M., Beck E. A. Plasmic degradation of human fibrinogen. I. Structural characterization of degradation products. Biochim Biophys Acta. 1972 May 18;263(3):631–644. doi: 10.1016/0005-2795(72)90044-x. [DOI] [PubMed] [Google Scholar]
  13. Gerdin B., Saldeen T. Effect of fibrin degradation products on microvascular permeability. Thromb Res. 1978 Dec;13(6):995–1006. doi: 10.1016/0049-3848(78)90228-1. [DOI] [PubMed] [Google Scholar]
  14. Hessel B., Makino M., Iwanaga S., Blombäck B. Primary structure of human fibrinogen and fibrin. Structural studies on NH2-terminal part of B beta chain. Eur J Biochem. 1979 Aug 1;98(2):521–534. doi: 10.1111/j.1432-1033.1979.tb13213.x. [DOI] [PubMed] [Google Scholar]
  15. Howes E. L., Jr, McKay D. G. Ocular changes in the generalized Shwartzman reaction. Arch Ophthalmol. 1973 Sep;90(3):218–224. doi: 10.1001/archopht.1973.01000050220007. [DOI] [PubMed] [Google Scholar]
  16. Kadish J. L., Butterfield C. E., Folkman J. The effect of fibrin on cultured vascular endothelial cells. Tissue Cell. 1979;11(1):99–108. doi: 10.1016/0040-8166(79)90010-7. [DOI] [PubMed] [Google Scholar]
  17. Kay A. B., Pepper D. S., McKenzie R. The identification of fibrinopeptide B as a chemotactic agent derived from human fibrinogen. Br J Haematol. 1974 Aug;27(4):669–677. doi: 10.1111/j.1365-2141.1974.tb06633.x. [DOI] [PubMed] [Google Scholar]
  18. Kwock L., Douglas W. H., Lin P. S., Baur W. E., Fanburg B. L. Endothelial cell damage after gamma-irradiation in vitro: impaired uptake of alpha-aminoisobutyric acid. Am Rev Respir Dis. 1982 Jan;125(1):95–99. doi: 10.1164/arrd.1982.125.1.95. [DOI] [PubMed] [Google Scholar]
  19. Lahiri B., Shainoff J. R. Fate of fibrinopeptides in the reaction between human plasmin and fibrinogen. Biochim Biophys Acta. 1973 Mar 23;303(1):161–170. doi: 10.1016/0005-2795(73)90157-8. [DOI] [PubMed] [Google Scholar]
  20. Luterman A., Manwaring D., Curreri P. W. The role of fibrinogen degradation products in the pathogenesis of the respiratory distress syndrome. Surgery. 1977 Nov;82(5):703–709. [PubMed] [Google Scholar]
  21. Malik A. B., Johnson A., Tahamont M. V. Mechanisms of lung vascular injury after intravascular coagulation. Ann N Y Acad Sci. 1982;384:213–234. doi: 10.1111/j.1749-6632.1982.tb21374.x. [DOI] [PubMed] [Google Scholar]
  22. Malik A. B., van der Zee H. Mechanism of pulmonary edema induced by microembolization in dogs. Circ Res. 1978 Jan;42(1):73–79. doi: 10.1161/01.res.42.1.73. [DOI] [PubMed] [Google Scholar]
  23. McKenzie R., Pepper D. S., Kay A. B. The generation of chemotactic activity for human leukocytes by the action of plasmin on human fibrinogen. Thromb Res. 1975 Jan;6(1):1–8. doi: 10.1016/0049-3848(75)90145-0. [DOI] [PubMed] [Google Scholar]
  24. Mills D., Karpatkin S. The initial macromolecular derivatives of human fibrinogen produced by plasmin. Biochim Biophys Acta. 1972 Jun 22;271(1):163–173. doi: 10.1016/0005-2795(72)90144-4. [DOI] [PubMed] [Google Scholar]
  25. Mosesson M. W., Finlayson J. S., Umfleet R. A., Galanakis D. Human fibrinogen heterogeneities. I. Structural and related studies of plasma fibrinogens which are high solubility catabolic intermediates. J Biol Chem. 1972 Aug 25;247(16):5210–5219. [PubMed] [Google Scholar]
  26. Nossel H. L. Relative proteolysis of the fibrinogen B beta chain by thrombin and plasmin as a determinant of thrombosis. Nature. 1981 May 14;291(5811):165–167. doi: 10.1038/291165a0. [DOI] [PubMed] [Google Scholar]
  27. Okadome K., Kinjo M., Tanaka K. Effect of fibrin on arterial endothelial cells in vitro--an electron microscopic study. Acta Pathol Jpn. 1981 May;31(3):413–421. doi: 10.1111/j.1440-1827.1981.tb01385.x. [DOI] [PubMed] [Google Scholar]
  28. Picciano P. T., Johnson B., Walenga R. W., Donovan M., Borman B. J., Douglas W. H., Kreutzer D. L. Effects of D-valine on pulmonary artery endothelial cell morphology and function in cell culture. Exp Cell Res. 1984 Mar;151(1):134–147. doi: 10.1016/0014-4827(84)90363-x. [DOI] [PubMed] [Google Scholar]
  29. Richardson D. L., Pepper D. S., Kay A. B. Chemotaxis for human monocytes by fibrinogen-derived peptides. Br J Haematol. 1976 Apr;32(4):507–513. doi: 10.1111/j.1365-2141.1976.tb00953.x. [DOI] [PubMed] [Google Scholar]
  30. Rowland F. N., Donovan M. J., Lindsay M., Weiss W. I., O'Rourke J., Kreutzer D. L. Demonstration of inflammatory mediator-induced inflammation and endothelial cell damage in the anterior segment of the eye. Am J Pathol. 1983 Jan;110(1):1–12. [PMC free article] [PubMed] [Google Scholar]
  31. Rowland F. N., Donovan M. J., Picciano P. T., Kreutzer D. L. Fibrin-mediated vascular injury: demonstration of vascular endothelial cell retraction in response to soluble fibrin-associated factors. J Exp Pathol. 1984 Summer;1(3):217–240. [PubMed] [Google Scholar]
  32. Shen L. L., Hermans J., McDonagh J., McDonagh R. P. Role of fibrinopeptide B release: comparison of fibrins produced by thrombin and Ancrod. Am J Physiol. 1977 Jun;232(6):H629–H633. doi: 10.1152/ajpheart.1977.232.6.H629. [DOI] [PubMed] [Google Scholar]
  33. Sherman L. A., Harwig S., Lee J. In vitro formation and i vivo clearance of fibrinogen: fibrin complexes. J Lab Clin Med. 1975 Jul;86(1):100–111. [PubMed] [Google Scholar]
  34. Sherman L. A., Lee J. Specific binding of soluble fibrin to macrophages. J Exp Med. 1977 Jan 1;145(1):76–85. doi: 10.1084/jem.145.1.76. [DOI] [PMC free article] [PubMed] [Google Scholar]
  35. Sueishi K., Nanno S., Tanaka K. Permeability enhancing and chemotactic activities of lower molecular weight degradation products of human fibrinogen. Thromb Haemost. 1981 Feb 23;45(1):90–94. [PubMed] [Google Scholar]
  36. Takagi T., Doolittle R. F. Amino acid sequence studies on plasmin-derived fragments of human fibrinogen: amino-terminal sequences of intermediate and terminal fragments. Biochemistry. 1975 Mar 11;14(5):940–946. doi: 10.1021/bi00676a010. [DOI] [PubMed] [Google Scholar]
  37. WOOD R. M., BICK M. W. The effect of heparin on the ocular tuberculin reaction. AMA Arch Ophthalmol. 1959 May;61(5):709–711. doi: 10.1001/archopht.1959.00940090711006. [DOI] [PubMed] [Google Scholar]

Articles from The American Journal of Pathology are provided here courtesy of American Society for Investigative Pathology

RESOURCES