Skip to main content
Journal of Virology logoLink to Journal of Virology
. 1996 Apr;70(4):2277–2285. doi: 10.1128/jvi.70.4.2277-2285.1996

Protease-induced infectivity of hepatitis B virus for a human hepatoblastoma cell line.

X Lu 1, T M Block 1, W H Gerlich 1
PMCID: PMC190069  PMID: 8642654

Abstract

The human hepatoblastoma cell line HepG2 produces and secretes hepatitis B virus (HBV) after transfection of cloned HBV DNA. Intact virions do not infect these cells, although they attach to the surface of the HepG2 cell through binding sites in the pre-S1 domain. Entry of enveloped virions into the cell often requires proteolytic cleavage of a viral surface protein that is involved in fusion between the cell membrane and the viral envelope. Recently, we observed pre-S-independent, nonspecific binding between hepatitis B surface (HBs) particles and HepG2 cells after treatment of HBs antigen particles with V8 protease, which cleaves next to a putative fusion sequence. Chymotrypsin removed this fusion sequence and did not induce binding. In this study, we postulate that lack of a suitable fusion-activating protease was the reason why the HepG2 cells were not susceptible to HBV. To test this hypothesis, virions were partially purified from the plasma of HBV carriers and treated with either staphylococcal V8 or porcine chymotrypsin protease. Protease-digested virus lost reactivity with pre-S2-specific antibody but remained morphologically intact as determined by electron microscopy. After separation from the proteases, virions were incubated with HepG2 cells at pH 5.5. Cultures inoculated with either intact or chymotrypsin-digested virus did not contain detectable levels of intracellular HBV DNA at any time following infection. However, in cultures inoculated with V8-digested virions, HBV-specific products, including covalently closed circular DNA, viral RNA, and viral pre-S2 antigen, could be detected in a time-dependent manner following infection. Immunofluorescence analysis revealed that 10 to 30% of the infected HepG2 cells produced HBV antigen. Persistent secretion of virus by the infected HepG2 cells lasted at least 14 days and was maintained during several reseeding steps. The results show that V8-digested HBV can productively infect tissue cultures of HepG2 cells. It is suggested that proteolysis-dependent exposure of a fusion domain within the envelope protein of HBV is necessary during natural infection.

Full Text

The Full Text of this article is available as a PDF (833.7 KB).

Selected References

These references are in PubMed. This may not be the complete list of references from this article.

  1. Acs G., Sells M. A., Purcell R. H., Price P., Engle R., Shapiro M., Popper H. Hepatitis B virus produced by transfected Hep G2 cells causes hepatitis in chimpanzees. Proc Natl Acad Sci U S A. 1987 Jul;84(13):4641–4644. doi: 10.1073/pnas.84.13.4641. [DOI] [PMC free article] [PubMed] [Google Scholar]
  2. Aldrich C. E., Coates L., Wu T. T., Newbold J., Tennant B. C., Summers J., Seeger C., Mason W. S. In vitro infection of woodchuck hepatocytes with woodchuck hepatitis virus and ground squirrel hepatitis virus. Virology. 1989 Sep;172(1):247–252. doi: 10.1016/0042-6822(89)90126-8. [DOI] [PubMed] [Google Scholar]
  3. Bchini R., Capel F., Dauguet C., Dubanchet S., Petit M. A. In vitro infection of human hepatoma (HepG2) cells with hepatitis B virus. J Virol. 1990 Jun;64(6):3025–3032. doi: 10.1128/jvi.64.6.3025-3032.1990. [DOI] [PMC free article] [PubMed] [Google Scholar]
  4. Block T. M., Lu X., Platt F. M., Foster G. R., Gerlich W. H., Blumberg B. S., Dwek R. A. Secretion of human hepatitis B virus is inhibited by the imino sugar N-butyldeoxynojirimycin. Proc Natl Acad Sci U S A. 1994 Mar 15;91(6):2235–2239. doi: 10.1073/pnas.91.6.2235. [DOI] [PMC free article] [PubMed] [Google Scholar]
  5. Budkowska A., Quan C., Groh F., Bedossa P., Dubreuil P., Bouvet J. P., Pillot J. Hepatitis B virus (HBV) binding factor in human serum: candidate for a soluble form of hepatocyte HBV receptor. J Virol. 1993 Jul;67(7):4316–4322. doi: 10.1128/jvi.67.7.4316-4322.1993. [DOI] [PMC free article] [PubMed] [Google Scholar]
  6. Galle P. R., Hagelstein J., Kommerell B., Volkmann M., Schranz P., Zentgraf H. In vitro experimental infection of primary human hepatocytes with hepatitis B virus. Gastroenterology. 1994 Mar;106(3):664–673. doi: 10.1016/0016-5085(94)90700-5. [DOI] [PubMed] [Google Scholar]
  7. Gerlich W. H., Lu X., Heermann K. H. Studies on the attachment and penetration of hepatitis B virus. J Hepatol. 1993;17 (Suppl 3):S10–S14. doi: 10.1016/s0168-8278(05)80417-9. [DOI] [PubMed] [Google Scholar]
  8. Gripon P., Diot C., Guguen-Guillouzo C. Reproducible high level infection of cultured adult human hepatocytes by hepatitis B virus: effect of polyethylene glycol on adsorption and penetration. Virology. 1993 Feb;192(2):534–540. doi: 10.1006/viro.1993.1069. [DOI] [PubMed] [Google Scholar]
  9. Gripon P., Diot C., Thézé N., Fourel I., Loreal O., Brechot C., Guguen-Guillouzo C. Hepatitis B virus infection of adult human hepatocytes cultured in the presence of dimethyl sulfoxide. J Virol. 1988 Nov;62(11):4136–4143. doi: 10.1128/jvi.62.11.4136-4143.1988. [DOI] [PMC free article] [PubMed] [Google Scholar]
  10. Heermann K. H., Goldmann U., Schwartz W., Seyffarth T., Baumgarten H., Gerlich W. H. Large surface proteins of hepatitis B virus containing the pre-s sequence. J Virol. 1984 Nov;52(2):396–402. doi: 10.1128/jvi.52.2.396-402.1984. [DOI] [PMC free article] [PubMed] [Google Scholar]
  11. Heermann K. H., Kruse F., Seifer M., Gerlich W. H. Immunogenicity of the gene S and Pre-S domains in hepatitis B virions and HBsAg filaments. Intervirology. 1987;28(1):14–25. doi: 10.1159/000149993. [DOI] [PubMed] [Google Scholar]
  12. Heo D. S., Park J. G., Hata K., Day R., Herberman R. B., Whiteside T. L. Evaluation of tetrazolium-based semiautomatic colorimetric assay for measurement of human antitumor cytotoxicity. Cancer Res. 1990 Jun 15;50(12):3681–3690. [PubMed] [Google Scholar]
  13. Hertogs K., Depla E., Crabbé T., De Bruin W., Leenders W., Moshage H., Yap S. H. Spontaneous development of anti-hepatitis B virus envelope (anti-idiotypic) antibodies in animals immunized with human liver endonexin II or with the F(ab')2 fragment of anti-human liver endonexin II immunoglobulin G: evidence for a receptor-ligand-like relationship between small hepatitis B surface antigen and endonexin II. J Virol. 1994 Mar;68(3):1516–1521. doi: 10.1128/jvi.68.3.1516-1521.1994. [DOI] [PMC free article] [PubMed] [Google Scholar]
  14. Höhne M., Schaefer S., Seifer M., Feitelson M. A., Paul D., Gerlich W. H. Malignant transformation of immortalized transgenic hepatocytes after transfection with hepatitis B virus DNA. EMBO J. 1990 Apr;9(4):1137–1145. doi: 10.1002/j.1460-2075.1990.tb08220.x. [DOI] [PMC free article] [PubMed] [Google Scholar]
  15. Israel J., London W. T. Liver structure, function, and anatomy: effects of hepatitis B virus. Curr Top Microbiol Immunol. 1991;168:1–20. doi: 10.1007/978-3-642-76015-0_1. [DOI] [PubMed] [Google Scholar]
  16. Korec E., Gerlich W. H. HBc and HBe specificity of monoclonal antibodies against complete and truncated HBc proteins from E. coli. Arch Virol Suppl. 1992;4:119–121. doi: 10.1007/978-3-7091-5633-9_25. [DOI] [PubMed] [Google Scholar]
  17. Kowalski D., Kroeker W. D., Laskowski M., Sr Mung bean nuclease I. Physical, chemical, and catalytic properties. Biochemistry. 1976 Oct 5;15(20):4457–4463. doi: 10.1021/bi00665a019. [DOI] [PubMed] [Google Scholar]
  18. Köck J., Schlicht H. J. Analysis of the earliest steps of hepadnavirus replication: genome repair after infectious entry into hepatocytes does not depend on viral polymerase activity. J Virol. 1993 Aug;67(8):4867–4874. doi: 10.1128/jvi.67.8.4867-4874.1993. [DOI] [PMC free article] [PubMed] [Google Scholar]
  19. Lobigs M., Garoff H. Fusion function of the Semliki Forest virus spike is activated by proteolytic cleavage of the envelope glycoprotein precursor p62. J Virol. 1990 Mar;64(3):1233–1240. doi: 10.1128/jvi.64.3.1233-1240.1990. [DOI] [PMC free article] [PubMed] [Google Scholar]
  20. Lu X., Mehta A., Dwek R., Butters T., Block T. Evidence that N-linked glycosylation is necessary for hepatitis B virus secretion. Virology. 1995 Nov 10;213(2):660–665. doi: 10.1006/viro.1995.0038. [DOI] [PubMed] [Google Scholar]
  21. Marsh M., Helenius A. Virus entry into animal cells. Adv Virus Res. 1989;36:107–151. doi: 10.1016/S0065-3527(08)60583-7. [DOI] [PMC free article] [PubMed] [Google Scholar]
  22. Meisel H., Sominskaya I., Pumpens P., Pushko P., Borisova G., Deepen R., Lu X., Spiller G. H., Krüger D. H., Grens E. Fine mapping and functional characterization of two immuno-dominant regions from the preS2 sequence of hepatitis B virus. Intervirology. 1994;37(6):330–339. doi: 10.1159/000150397. [DOI] [PubMed] [Google Scholar]
  23. Morrison T. G. Structure, function, and intracellular processing of paramyxovirus membrane proteins. Virus Res. 1988 May;10(2-3):113–135. doi: 10.1016/0168-1702(88)90010-x. [DOI] [PubMed] [Google Scholar]
  24. Nagai Y. Protease-dependent virus tropism and pathogenicity. Trends Microbiol. 1993 Jun;1(3):81–87. doi: 10.1016/0966-842X(93)90112-5. [DOI] [PMC free article] [PubMed] [Google Scholar]
  25. Neurath A. R., Kent S. B., Strick N., Parker K. Identification and chemical synthesis of a host cell receptor binding site on hepatitis B virus. Cell. 1986 Aug 1;46(3):429–436. doi: 10.1016/0092-8674(86)90663-x. [DOI] [PubMed] [Google Scholar]
  26. Ochiya T., Tsurimoto T., Ueda K., Okubo K., Shiozawa M., Matsubara K. An in vitro system for infection with hepatitis B virus that uses primary human fetal hepatocytes. Proc Natl Acad Sci U S A. 1989 Mar;86(6):1875–1879. doi: 10.1073/pnas.86.6.1875. [DOI] [PMC free article] [PubMed] [Google Scholar]
  27. Pontisso P., Ruvoletto M. G., Gerlich W. H., Heermann K. H., Bardini R., Alberti A. Identification of an attachment site for human liver plasma membranes on hepatitis B virus particles. Virology. 1989 Dec;173(2):522–530. doi: 10.1016/0042-6822(89)90564-3. [DOI] [PubMed] [Google Scholar]
  28. Possehl C., Repp R., Heermann K. H., Korec E., Uy A., Gerlich W. H. Absence of free core antigen in anti-HBc negative viremic hepatitis B carriers. Arch Virol Suppl. 1992;4:39–41. doi: 10.1007/978-3-7091-5633-9_8. [DOI] [PubMed] [Google Scholar]
  29. Qiao M., Macnaughton T. B., Gowans E. J. Adsorption and penetration of hepatitis B virus in a nonpermissive cell line. Virology. 1994 Jun;201(2):356–363. doi: 10.1006/viro.1994.1301. [DOI] [PubMed] [Google Scholar]
  30. Rijntjes P. J., Moshage H. J., Yap S. H. In vitro infection of primary cultures of cryopreserved adult human hepatocytes with hepatitis B virus. Virus Res. 1988 Apr;10(1):95–109. doi: 10.1016/0168-1702(88)90060-3. [DOI] [PubMed] [Google Scholar]
  31. Rodríguez-Crespo I., Núez E., Gómez-Gutiérrez J., Yélamos B., Albar J. P., Peterson D. L., Gavilanes F. Phospholipid interactions of the putative fusion peptide of hepatitis B virus surface antigen S protein. J Gen Virol. 1995 Feb;76(Pt 2):301–308. doi: 10.1099/0022-1317-76-2-301. [DOI] [PubMed] [Google Scholar]
  32. Roingeard P., Lu S. L., Sureau C., Freschlin M., Arbeille B., Essex M., Romet-Lemonne J. L. Immunocytochemical and electron microscopic study of hepatitis B virus antigen and complete particle production in hepatitis B virus DNA transfected HepG2 cells. Hepatology. 1990 Feb;11(2):277–285. doi: 10.1002/hep.1840110219. [DOI] [PubMed] [Google Scholar]
  33. Rott R. The pathogenic determinant of influenza virus. Vet Microbiol. 1992 Nov;33(1-4):303–310. doi: 10.1016/0378-1135(92)90058-2. [DOI] [PubMed] [Google Scholar]
  34. Sells M. A., Chen M. L., Acs G. Production of hepatitis B virus particles in Hep G2 cells transfected with cloned hepatitis B virus DNA. Proc Natl Acad Sci U S A. 1987 Feb;84(4):1005–1009. doi: 10.1073/pnas.84.4.1005. [DOI] [PMC free article] [PubMed] [Google Scholar]
  35. Sells M. A., Zelent A. Z., Shvartsman M., Acs G. Replicative intermediates of hepatitis B virus in HepG2 cells that produce infectious virions. J Virol. 1988 Aug;62(8):2836–2844. doi: 10.1128/jvi.62.8.2836-2844.1988. [DOI] [PMC free article] [PubMed] [Google Scholar]
  36. Stibbe W., Gerlich W. H. Structural relationships between minor and major proteins of hepatitis B surface antigen. J Virol. 1983 May;46(2):626–628. doi: 10.1128/jvi.46.2.626-628.1983. [DOI] [PMC free article] [PubMed] [Google Scholar]
  37. Sureau C. In vitro culture systems for hepatitis B and delta viruses. Arch Virol Suppl. 1993;8:3–14. doi: 10.1007/978-3-7091-9312-9_1. [DOI] [PubMed] [Google Scholar]
  38. Thézé N., Gripon P., Fourel I., Hantz O., Trepo C., Guguen-Guillouzo C. Maintenance of woodchuck hepatitis virus activity in woodchuck hepatocyte primary culture. J Gen Virol. 1987 Apr;68(Pt 4):1029–1039. doi: 10.1099/0022-1317-68-4-1029. [DOI] [PubMed] [Google Scholar]
  39. Tuttleman J. S., Pourcel C., Summers J. Formation of the pool of covalently closed circular viral DNA in hepadnavirus-infected cells. Cell. 1986 Nov 7;47(3):451–460. doi: 10.1016/0092-8674(86)90602-1. [DOI] [PubMed] [Google Scholar]
  40. Tuttleman J. S., Pugh J. C., Summers J. W. In vitro experimental infection of primary duck hepatocyte cultures with duck hepatitis B virus. J Virol. 1986 Apr;58(1):17–25. doi: 10.1128/jvi.58.1.17-25.1986. [DOI] [PMC free article] [PubMed] [Google Scholar]
  41. White J. M. Membrane fusion. Science. 1992 Nov 6;258(5084):917–924. doi: 10.1126/science.1439803. [DOI] [PubMed] [Google Scholar]
  42. Winchester B., Fleet G. W. Amino-sugar glycosidase inhibitors: versatile tools for glycobiologists. Glycobiology. 1992 Jun;2(3):199–210. doi: 10.1093/glycob/2.3.199. [DOI] [PubMed] [Google Scholar]

Articles from Journal of Virology are provided here courtesy of American Society for Microbiology (ASM)

RESOURCES