Skip to main content
Journal of Virology logoLink to Journal of Virology
. 1996 Apr;70(4):2286–2295. doi: 10.1128/jvi.70.4.2286-2295.1996

Possible role of splice acceptor site in expression of unspliced gag-containing message of Moloney murine leukemia virus.

M Oshima 1, T Odawara 1, T Matano 1, H Sakahira 1, Y Kuchino 1, A Iwamoto 1, H Yoshikura 1
PMCID: PMC190070  PMID: 8642655

Abstract

Moloney murine leukemia virus (MLV) having the gag coding region alone, G3.6, produced a low level of mRNA (1/10 of the wild-type level). Ligation of 441 nucleotides (nt) containing a splice acceptor (SA) site to the downstream portion of the remaining gag region restored the level of the unspliced message, simultaneously activating a cryptic splice donor (SD) site in the middle of the p30 coding region (between nt 1596 and 1597). Ligation of the 441 nt in the same site in the inverted orientation also increased the level of the unspliced message, activating the same SD site (between nt 1596 and 1597) and a new SA site just in front of the inserted 441 nt (between nt 4770 and 4771). Deletion or inversion of the 441-nt SA sequence from the wild-type MLV or from int in-frame deletion or int frameshift mutant MLVs of nearly full size resulted in the loss of spliced mRNA and concomitantly in a severe reduction of the unspliced mRNA, particularly at 37 degrees C. Deletion of the 5' SD site did not result in the reduction of the unspliced-mRNA level. When the gag region in G3.6 was replaced with a Neo(r) coding region, the level of expression was high. The data taken together suggest that the presence of an SA signal is necessary for high-level expression of unspliced mRNA encoding Gag or Gag-Pol.

Full Text

The Full Text of this article is available as a PDF (872.9 KB).

Selected References

These references are in PubMed. This may not be the complete list of references from this article.

  1. Armentano D., Yu S. F., Kantoff P. W., von Ruden T., Anderson W. F., Gilboa E. Effect of internal viral sequences on the utility of retroviral vectors. J Virol. 1987 May;61(5):1647–1650. doi: 10.1128/jvi.61.5.1647-1650.1987. [DOI] [PMC free article] [PubMed] [Google Scholar]
  2. Arrigo S., Beemon K. Regulation of Rous sarcoma virus RNA splicing and stability. Mol Cell Biol. 1988 Nov;8(11):4858–4867. doi: 10.1128/mcb.8.11.4858. [DOI] [PMC free article] [PubMed] [Google Scholar]
  3. Arrigo S., Yun M., Beemon K. cis-acting regulatory elements within gag genes of avian retroviruses. Mol Cell Biol. 1987 Jan;7(1):388–397. doi: 10.1128/mcb.7.1.388. [DOI] [PMC free article] [PubMed] [Google Scholar]
  4. Bacheler L., Fan H. Isolation of recombinant DNA clones carrying complete integrated proviruses of Moloney murine leukemia virus. J Virol. 1981 Jan;37(1):181–190. doi: 10.1128/jvi.37.1.181-190.1981. [DOI] [PMC free article] [PubMed] [Google Scholar]
  5. Bogerd H. P., Fridell R. A., Madore S., Cullen B. R. Identification of a novel cellular cofactor for the Rev/Rex class of retroviral regulatory proteins. Cell. 1995 Aug 11;82(3):485–494. doi: 10.1016/0092-8674(95)90437-9. [DOI] [PubMed] [Google Scholar]
  6. Carlberg K., Ryden T. A., Beemon K. Localization and footprinting of an enhancer within the avian sarcoma virus gag gene. J Virol. 1988 May;62(5):1617–1624. doi: 10.1128/jvi.62.5.1617-1624.1988. [DOI] [PMC free article] [PubMed] [Google Scholar]
  7. Chang D. D., Sharp P. A. Regulation by HIV Rev depends upon recognition of splice sites. Cell. 1989 Dec 1;59(5):789–795. doi: 10.1016/0092-8674(89)90602-8. [DOI] [PubMed] [Google Scholar]
  8. Chesebro B., Britt W., Evans L., Wehrly K., Nishio J., Cloyd M. Characterization of monoclonal antibodies reactive with murine leukemia viruses: use in analysis of strains of friend MCF and Friend ecotropic murine leukemia virus. Virology. 1983 May;127(1):134–148. doi: 10.1016/0042-6822(83)90378-1. [DOI] [PubMed] [Google Scholar]
  9. Chomczynski P., Sacchi N. Single-step method of RNA isolation by acid guanidinium thiocyanate-phenol-chloroform extraction. Anal Biochem. 1987 Apr;162(1):156–159. doi: 10.1006/abio.1987.9999. [DOI] [PubMed] [Google Scholar]
  10. Cochrane A. W., Jones K. S., Beidas S., Dillon P. J., Skalka A. M., Rosen C. A. Identification and characterization of intragenic sequences which repress human immunodeficiency virus structural gene expression. J Virol. 1991 Oct;65(10):5305–5313. doi: 10.1128/jvi.65.10.5305-5313.1991. [DOI] [PMC free article] [PubMed] [Google Scholar]
  11. De Mars M., Sterner D. A., Chiocca S. M., Biggart N. W., Murphy E. C., Jr Regulation of RNA splicing in gag-deficient mutants of Moloney murine sarcoma virus MuSVts110. J Virol. 1990 Apr;64(4):1421–1428. doi: 10.1128/jvi.64.4.1421-1428.1990. [DOI] [PMC free article] [PubMed] [Google Scholar]
  12. Felsenstein K. M., Goff S. P. Expression of the gag-pol fusion protein of Moloney murine leukemia virus without gag protein does not induce virion formation or proteolytic processing. J Virol. 1988 Jun;62(6):2179–2182. doi: 10.1128/jvi.62.6.2179-2182.1988. [DOI] [PMC free article] [PubMed] [Google Scholar]
  13. Greenberg M. E., Ziff E. B. Stimulation of 3T3 cells induces transcription of the c-fos proto-oncogene. Nature. 1984 Oct 4;311(5985):433–438. doi: 10.1038/311433a0. [DOI] [PubMed] [Google Scholar]
  14. Huai L., Chiocca S. M., Gilbreth M. A., Ainsworth J. R., Bishop L. A., Murphy E. C., Jr Moloney murine sarcoma virus MuSVts110 DNA: cloning, nucleotide sequence, and gene expression. J Virol. 1992 Sep;66(9):5329–5337. doi: 10.1128/jvi.66.9.5329-5337.1992. [DOI] [PMC free article] [PubMed] [Google Scholar]
  15. Ikeda H., Trowsdale J., Saito I. Mulcos: a vector for amplification and simultaneous expression of two foreign genes in mammalian cells. Gene. 1988 Nov 15;71(1):19–27. doi: 10.1016/0378-1119(88)90073-x. [DOI] [PubMed] [Google Scholar]
  16. Jones D. S., Nemoto F., Kuchino Y., Masuda M., Yoshikura H., Nishimura S. The effect of specific mutations at and around the gag-pol gene junction of Moloney murine leukaemia virus. Nucleic Acids Res. 1989 Aug 11;17(15):5933–5945. doi: 10.1093/nar/17.15.5933. [DOI] [PMC free article] [PubMed] [Google Scholar]
  17. Katz R. A., Kotler M., Skalka A. M. cis-acting intron mutations that affect the efficiency of avian retroviral RNA splicing: implication for mechanisms of control. J Virol. 1988 Aug;62(8):2686–2695. doi: 10.1128/jvi.62.8.2686-2695.1988. [DOI] [PMC free article] [PubMed] [Google Scholar]
  18. Katz R. A., Skalka A. M. Control of retroviral RNA splicing through maintenance of suboptimal processing signals. Mol Cell Biol. 1990 Feb;10(2):696–704. doi: 10.1128/mcb.10.2.696. [DOI] [PMC free article] [PubMed] [Google Scholar]
  19. Kjems J., Sharp P. A. The basic domain of Rev from human immunodeficiency virus type 1 specifically blocks the entry of U4/U6.U5 small nuclear ribonucleoprotein in spliceosome assembly. J Virol. 1993 Aug;67(8):4769–4776. doi: 10.1128/jvi.67.8.4769-4776.1993. [DOI] [PMC free article] [PubMed] [Google Scholar]
  20. Lu X. B., Heimer J., Rekosh D., Hammarskjöld M. L. U1 small nuclear RNA plays a direct role in the formation of a rev-regulated human immunodeficiency virus env mRNA that remains unspliced. Proc Natl Acad Sci U S A. 1990 Oct;87(19):7598–7602. doi: 10.1073/pnas.87.19.7598. [DOI] [PMC free article] [PubMed] [Google Scholar]
  21. McNally M. T., Beemon K. Intronic sequences and 3' splice sites control Rous sarcoma virus RNA splicing. J Virol. 1992 Jan;66(1):6–11. doi: 10.1128/jvi.66.1.6-11.1992. [DOI] [PMC free article] [PubMed] [Google Scholar]
  22. McNally M. T., Gontarek R. R., Beemon K. Characterization of Rous sarcoma virus intronic sequences that negatively regulate splicing. Virology. 1991 Nov;185(1):99–108. doi: 10.1016/0042-6822(91)90758-4. [DOI] [PubMed] [Google Scholar]
  23. Mount S. M. A catalogue of splice junction sequences. Nucleic Acids Res. 1982 Jan 22;10(2):459–472. doi: 10.1093/nar/10.2.459. [DOI] [PMC free article] [PubMed] [Google Scholar]
  24. Niwa H., Yamamura K., Miyazaki J. Efficient selection for high-expression transfectants with a novel eukaryotic vector. Gene. 1991 Dec 15;108(2):193–199. doi: 10.1016/0378-1119(91)90434-d. [DOI] [PubMed] [Google Scholar]
  25. Odawara T., Yoshikura H., Ohshima M., Tanaka T., Jones D. S., Nemoto F., Kuchino Y., Iwamoto A. Analysis of Moloney murine leukemia virus revertants mutated at the gag-pol junction. J Virol. 1991 Nov;65(11):6376–6379. doi: 10.1128/jvi.65.11.6376-6379.1991. [DOI] [PMC free article] [PubMed] [Google Scholar]
  26. Olsen H. S., Cochrane A. W., Rosen C. Interaction of cellular factors with intragenic cis-acting repressive sequences within the HIV genome. Virology. 1992 Dec;191(2):709–715. doi: 10.1016/0042-6822(92)90246-l. [DOI] [PubMed] [Google Scholar]
  27. Ryden T. A., Beemon K. Avian retroviral long terminal repeats bind CCAAT/enhancer-binding protein. Mol Cell Biol. 1989 Mar;9(3):1155–1164. doi: 10.1128/mcb.9.3.1155. [DOI] [PMC free article] [PubMed] [Google Scholar]
  28. Saiki R. K., Bugawan T. L., Horn G. T., Mullis K. B., Erlich H. A. Analysis of enzymatically amplified beta-globin and HLA-DQ alpha DNA with allele-specific oligonucleotide probes. Nature. 1986 Nov 13;324(6093):163–166. doi: 10.1038/324163a0. [DOI] [PubMed] [Google Scholar]
  29. Shields A., Witte W. N., Rothenberg E., Baltimore D. High frequency of aberrant expression of Moloney murine leukemia virus in clonal infections. Cell. 1978 Jul;14(3):601–609. doi: 10.1016/0092-8674(78)90245-3. [DOI] [PubMed] [Google Scholar]
  30. Shinnick T. M., Lerner R. A., Sutcliffe J. G. Nucleotide sequence of Moloney murine leukaemia virus. Nature. 1981 Oct 15;293(5833):543–548. doi: 10.1038/293543a0. [DOI] [PubMed] [Google Scholar]
  31. Shoemaker C., Goff S., Gilboa E., Paskind M., Mitra S. W., Baltimore D. Structure of a cloned circular Moloney murine leukemia virus DNA molecule containing an inverted segment: implications for retrovirus integration. Proc Natl Acad Sci U S A. 1980 Jul;77(7):3932–3936. doi: 10.1073/pnas.77.7.3932. [DOI] [PMC free article] [PubMed] [Google Scholar]
  32. Sterner D. A., Murphy E. C., Jr Regulation of the efficiency and thermodependence of murine sarcoma virus MuSVts110 RNA splicing by sequences in both exons. Virology. 1992 Dec;191(2):638–648. doi: 10.1016/0042-6822(92)90239-l. [DOI] [PubMed] [Google Scholar]
  33. de Mars M., Cizdziel P. E., Murphy E. C., Jr Activation of cryptic splice sites in murine sarcoma virus-124 mutants. J Virol. 1990 Nov;64(11):5260–5269. doi: 10.1128/jvi.64.11.5260-5269.1990. [DOI] [PMC free article] [PubMed] [Google Scholar]

Articles from Journal of Virology are provided here courtesy of American Society for Microbiology (ASM)

RESOURCES