Abstract
Influenza A virus RNA-dependent RNA polymerase, purified from virion ribonucleoprotein particles and from which endogenous genomic RNA (vRNA) has been depleted by treatment with micrococcal nuclease, was used to study transcription initiation, elongation, and termination in vitro. Templates that contained either minus- or plus-sense influenza virus nucleoprotein minigenes with conserved 5' and 3' termini and the uridylate tract were constructed. The dinucleotide ApG and alfalfa mosaic virus RNA4 (AlMV4) were used as primers. ApG primed the synthesis of full-length positive-strand or cRNA products and shorter transcripts, depending upon the molar ratio between the nucleoprotein and the vRNA template. Sequence analysis of the ends of these transcripts demonstrated that the 5' termini of both transcripts and the 3' terminus of the full-length product were complementary to the 3' and 5' termini of the vRNA template, respectively, whereas the 3' terminus of the incomplete product corresponded to a sequence located 40 bases downstream from the 5' terminus of the template and was about 20 nucleotides downstream from the uridylate tract, which is the putative signal for polyadenylation. Binding of the cap structure of AlMV4 by the polymerase activated RNA synthesis by ligation-elongation of small genomic RNA fragments which were likely derived from a genome segment protected by the polymerase from micrococcal nuclease digestion. The sequence of these fragments mapped to a region 14 to 28 nucleotides upstream of the 3' terminus of the viral genome. Polymerase subunit involvement in transcription initiation with ApG or AlMV4 was characterized by studying the effect of purified polyclonal antisubunit immunoglobulins of the G class (IgGs) in transcription assays. These results showed that anti-PB2 IgG inhibited transcription initiation in both ApG- and AlMV4-primed reactions, whereas anti-PB1 antibodies also blocked transcription initiated with AlMV4. The differences observed in product size, product sequence, and differential inhibition by antisubunit IgGs are discussed. These observations would support the notion that the influenza virus RNA-dependent RNA polymerase undergoes a conformational change after the binding of the cap structure of host cell heterogeneous nuclear RNA by PB2, which then usually leads to endonucleolytic cleavage of the capped primer 13 nucleotides downstream from the cap.
Full Text
The Full Text of this article is available as a PDF (537.4 KB).
Selected References
These references are in PubMed. This may not be the complete list of references from this article.
- Beaton A. R., Krug R. M. Transcription antitermination during influenza viral template RNA synthesis requires the nucleocapsid protein and the absence of a 5' capped end. Proc Natl Acad Sci U S A. 1986 Sep;83(17):6282–6286. doi: 10.1073/pnas.83.17.6282. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Bouloy M., Morgan M. A., Shatkin A. J., Krug R. M. Cap and internal nucleotides of reovirus mRNA primers are incorporated into influenza viral complementary RNA during transcription in vitro. J Virol. 1979 Dec;32(3):895–904. doi: 10.1128/jvi.32.3.895-904.1979. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Bouloy M., Plotch S. J., Krug R. M. Globin mRNAs are primers for the transcription of influenza viral RNA in vitro. Proc Natl Acad Sci U S A. 1978 Oct;75(10):4886–4890. doi: 10.1073/pnas.75.10.4886. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Cianci C., Tiley L., Krystal M. Differential activation of the influenza virus polymerase via template RNA binding. J Virol. 1995 Jul;69(7):3995–3999. doi: 10.1128/jvi.69.7.3995-3999.1995. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Compans R. W., Content J., Duesberg P. H. Structure of the ribonucleoprotein of influenza virus. J Virol. 1972 Oct;10(4):795–800. doi: 10.1128/jvi.10.4.795-800.1972. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Fodor E., Pritlove D. C., Brownlee G. G. Characterization of the RNA-fork model of virion RNA in the initiation of transcription in influenza A virus. J Virol. 1995 Jul;69(7):4012–4019. doi: 10.1128/jvi.69.7.4012-4019.1995. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Galarza J. M., Sowa A., Hill V. M., Skorko R., Summers D. F. Influenza A virus NP protein expressed in insect cells by a recombinant baculovirus is associated with a protein kinase activity and possesses single-stranded RNA binding activity. Virus Res. 1992 Jun;24(1):91–106. doi: 10.1016/0168-1702(92)90033-6. [DOI] [PubMed] [Google Scholar]
- Hay A. J., Lomniczi B., Bellamy A. R., Skehel J. J. Transcription of the influenza virus genome. Virology. 1977 Dec;83(2):337–355. doi: 10.1016/0042-6822(77)90179-9. [DOI] [PubMed] [Google Scholar]
- Hay A. J., Skehel J. J., McCauley J. Characterization of influenza virus RNA complete transcripts. Virology. 1982 Jan 30;116(2):517–522. doi: 10.1016/0042-6822(82)90144-1. [DOI] [PubMed] [Google Scholar]
- Huang T. S., Palese P., Krystal M. Determination of influenza virus proteins required for genome replication. J Virol. 1990 Nov;64(11):5669–5673. doi: 10.1128/jvi.64.11.5669-5673.1990. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Ishihama A., Nagata K. Viral RNA polymerases. CRC Crit Rev Biochem. 1988;23(1):27–76. doi: 10.3109/10409238809103119. [DOI] [PubMed] [Google Scholar]
- Kawakami K., Mizumoto K., Ishihama A., Shinozaki-Yamaguchi K., Miura K. Activation of influenza virus-associated RNA polymerase by cap-1 structure (m7GpppNm). J Biochem. 1985 Feb;97(2):655–661. doi: 10.1093/oxfordjournals.jbchem.a135101. [DOI] [PubMed] [Google Scholar]
- Kimura N., Nishida M., Nagata K., Ishihama A., Oda K., Nakada S. Transcription of a recombinant influenza virus RNA in cells that can express the influenza virus RNA polymerase and nucleoprotein genes. J Gen Virol. 1992 Jun;73(Pt 6):1321–1328. doi: 10.1099/0022-1317-73-6-1321. [DOI] [PubMed] [Google Scholar]
- Kingsbury D. W., Jones I. M., Murti K. G. Assembly of influenza ribonucleoprotein in vitro using recombinant nucleoprotein. Virology. 1987 Feb;156(2):396–403. doi: 10.1016/0042-6822(87)90419-3. [DOI] [PubMed] [Google Scholar]
- Krug R. M., Broni B. A., Bouloy M. Are the 5' ends of influenza viral mRNAs synthesized in vivo donated by host mRNAs? Cell. 1979 Oct;18(2):329–334. doi: 10.1016/0092-8674(79)90052-7. [DOI] [PubMed] [Google Scholar]
- Lamb R. A., Choppin P. W. The gene structure and replication of influenza virus. Annu Rev Biochem. 1983;52:467–506. doi: 10.1146/annurev.bi.52.070183.002343. [DOI] [PubMed] [Google Scholar]
- Li X., Palese P. Characterization of the polyadenylation signal of influenza virus RNA. J Virol. 1994 Feb;68(2):1245–1249. doi: 10.1128/jvi.68.2.1245-1249.1994. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Li X., Palese P. Mutational analysis of the promoter required for influenza virus virion RNA synthesis. J Virol. 1992 Jul;66(7):4331–4338. doi: 10.1128/jvi.66.7.4331-4338.1992. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Luo G. X., Luytjes W., Enami M., Palese P. The polyadenylation signal of influenza virus RNA involves a stretch of uridines followed by the RNA duplex of the panhandle structure. J Virol. 1991 Jun;65(6):2861–2867. doi: 10.1128/jvi.65.6.2861-2867.1991. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Mandl C. W., Heinz F. X., Puchhammer-Stöckl E., Kunz C. Sequencing the termini of capped viral RNA by 5'-3' ligation and PCR. Biotechniques. 1991 Apr;10(4):484–486. [PubMed] [Google Scholar]
- McGeoch D., Kitron N. Influenza virion RNA-dependent RNA polymerase: stimulation by guanosine and related compounds. J Virol. 1975 Apr;15(4):686–695. doi: 10.1128/jvi.15.4.686-695.1975. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Mena I., de la Luna S., Albo C., Martín J., Nieto A., Ortín J., Portela A. Synthesis of biologically active influenza virus core proteins using a vaccinia virus-T7 RNA polymerase expression system. J Gen Virol. 1994 Aug;75(Pt 8):2109–2114. doi: 10.1099/0022-1317-75-8-2109. [DOI] [PubMed] [Google Scholar]
- Neufeld K. L., Richards O. C., Ehrenfeld E. Purification, characterization, and comparison of poliovirus RNA polymerase from native and recombinant sources. J Biol Chem. 1991 Dec 15;266(35):24212–24219. [PubMed] [Google Scholar]
- Parvin J. D., Palese P., Honda A., Ishihama A., Krystal M. Promoter analysis of influenza virus RNA polymerase. J Virol. 1989 Dec;63(12):5142–5152. doi: 10.1128/jvi.63.12.5142-5152.1989. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Plotch S. J., Krug R. M. Influenza virion transcriptase: synthesis in vitro of large, polyadenylic acid-containing complementary RNA. J Virol. 1977 Jan;21(1):24–34. doi: 10.1128/jvi.21.1.24-34.1977. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Robertson J. S. 5' and 3' terminal nucleotide sequences of the RNA genome segments of influenza virus. Nucleic Acids Res. 1979 Aug 24;6(12):3745–3757. doi: 10.1093/nar/6.12.3745. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Robertson J. S., Schubert M., Lazzarini R. A. Polyadenylation sites for influenza virus mRNA. J Virol. 1981 Apr;38(1):157–163. doi: 10.1128/jvi.38.1.157-163.1981. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Seong B. L., Brownlee G. G. A new method for reconstituting influenza polymerase and RNA in vitro: a study of the promoter elements for cRNA and vRNA synthesis in vitro and viral rescue in vivo. Virology. 1992 Jan;186(1):247–260. doi: 10.1016/0042-6822(92)90079-5. [DOI] [PubMed] [Google Scholar]
- Seong B. L., Brownlee G. G. Nucleotides 9 to 11 of the influenza A virion RNA promoter are crucial for activity in vitro. J Gen Virol. 1992 Dec;73(Pt 12):3115–3124. doi: 10.1099/0022-1317-73-12-3115. [DOI] [PubMed] [Google Scholar]
- Shapiro G. I., Krug R. M. Influenza virus RNA replication in vitro: synthesis of viral template RNAs and virion RNAs in the absence of an added primer. J Virol. 1988 Jul;62(7):2285–2290. doi: 10.1128/jvi.62.7.2285-2290.1988. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Shi L., Summers D. F., Peng Q., Galarz J. M. Influenza A virus RNA polymerase subunit PB2 is the endonuclease which cleaves host cell mRNA and functions only as the trimeric enzyme. Virology. 1995 Apr 1;208(1):38–47. doi: 10.1006/viro.1995.1127. [DOI] [PubMed] [Google Scholar]
- Takeuchi K., Nagata K., Ishihama A. In vitro synthesis of influenza viral RNA: characterization of an isolated nuclear system that supports transcription of influenza viral RNA. J Biochem. 1987 Apr;101(4):837–845. doi: 10.1093/oxfordjournals.jbchem.a121950. [DOI] [PubMed] [Google Scholar]
- Tiley L. S., Hagen M., Matthews J. T., Krystal M. Sequence-specific binding of the influenza virus RNA polymerase to sequences located at the 5' ends of the viral RNAs. J Virol. 1994 Aug;68(8):5108–5116. doi: 10.1128/jvi.68.8.5108-5116.1994. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Trewick S. A., Dearden P. A rapid protocol for DNA extraction and primer annealing for PCR sequencing. Biotechniques. 1994 Nov;17(5):842–844. [PubMed] [Google Scholar]
- Young R. J., Content J. 5'-terminus of influenza virus RNA. Nat New Biol. 1971 Mar 31;230(13):140–142. doi: 10.1038/newbio230140a0. [DOI] [PubMed] [Google Scholar]
- de la Luna S., Martín J., Portela A., Ortín J. Influenza virus naked RNA can be expressed upon transfection into cells co-expressing the three subunits of the polymerase and the nucleoprotein from simian virus 40 recombinant viruses. J Gen Virol. 1993 Mar;74(Pt 3):535–539. doi: 10.1099/0022-1317-74-3-535. [DOI] [PubMed] [Google Scholar]