Skip to main content
Journal of Virology logoLink to Journal of Virology
. 1996 Apr;70(4):2460–2467. doi: 10.1128/jvi.70.4.2460-2467.1996

Retroviral insertional activation in a herpesvirus: transcriptional activation of US genes by an integrated long terminal repeat in a Marek's disease virus clone.

D Jones 1, P Brunovskis 1, R Witter 1, H J Kung 1
PMCID: PMC190089  PMID: 8642673

Abstract

Insertional activation of host proto-oncogenes has been recognized as a basic mechanism by which nonacute retroviruses induce cancer. Our previous work has demonstrated that retroviruses can efficiently integrate into DNA virus genomes. Specifically, coinfection of cultured fibroblasts with a chicken herpesvirus, Marek's disease virus (MDV), and a chicken retrovirus results in frequent stable retroviral insertions into the herpesvirus genome. Such insertions could alter the expression of herpesvirus genes, possibly resulting in novel phenotypic properties. In this article, we report the characterization of a replication-competent clone of MDV with integrated retroviral sequences. This virus was isolated from a chicken following injection of fibroblasts coinfected with MDV and the retrovirus, reticuloendotheliosis virus. Transcripts originating from the reticuloendotheliosis virus long terminal repeat promoters were found to encode the adjoining MDV genes, SORF2, US1, and US10. This virus replicates well in culture but has an unusual phenotype in chickens, characterized by an attenuated virulence which produces no nerve lesions but, rather, severe thymic atrophy. While the causal relationship between the insertion and the observed phenotypes remains to be established, our data provide the first evidence of retroviral insertional activation of herpesvirus genes.

Full Text

The Full Text of this article is available as a PDF (420.9 KB).

Selected References

These references are in PubMed. This may not be the complete list of references from this article.

  1. Briskin M. J., Hsu R. Y., Boggs T., Schultz J. A., Rishell W., Bosselman R. A. Heritable retroviral transgenes are highly expressed in chickens. Proc Natl Acad Sci U S A. 1991 Mar 1;88(5):1736–1740. doi: 10.1073/pnas.88.5.1736. [DOI] [PMC free article] [PubMed] [Google Scholar]
  2. Brunovskis P., Velicer L. F. The Marek's disease virus (MDV) unique short region: alphaherpesvirus-homologous, fowlpox virus-homologous, and MDV-specific genes. Virology. 1995 Jan 10;206(1):324–338. doi: 10.1016/s0042-6822(95)80048-4. [DOI] [PubMed] [Google Scholar]
  3. Calnek B. W., Carlisle J. C., Fabricant J., Murthy K. K., Schat K. A. Comparative pathogenesis studies with oncogenic and nononcogenic Marek's disease viruses and turkey herpesvirus. Am J Vet Res. 1979 Apr;40(4):541–548. [PubMed] [Google Scholar]
  4. Chirgwin J. M., Przybyla A. E., MacDonald R. J., Rutter W. J. Isolation of biologically active ribonucleic acid from sources enriched in ribonuclease. Biochemistry. 1979 Nov 27;18(24):5294–5299. doi: 10.1021/bi00591a005. [DOI] [PubMed] [Google Scholar]
  5. Cui Z. Z., Lee L. F., Smith E. J., Witter R. L., Chang T. S. Monoclonal-antibody-mediated enzyme-linked immunosorbent assay for detection of reticuloendotheliosis viruses. Avian Dis. 1988 Jan-Mar;32(1):32–40. [PubMed] [Google Scholar]
  6. Fukuchi K., Sudo M., Lee Y. S., Tanaka A., Nonoyama M. Structure of Marek's disease virus DNA: detailed restriction enzyme map. J Virol. 1984 Jul;51(1):102–109. doi: 10.1128/jvi.51.1.102-109.1984. [DOI] [PMC free article] [PubMed] [Google Scholar]
  7. Fukuchi K., Tanaka A., Schierman L. W., Witter R. L., Nonoyama M. The structure of Marek disease virus DNA: the presence of unique expansion in nonpathogenic viral DNA. Proc Natl Acad Sci U S A. 1985 Feb;82(3):751–754. doi: 10.1073/pnas.82.3.751. [DOI] [PMC free article] [PubMed] [Google Scholar]
  8. Hirano A., Wong T. Functional interaction between transcriptional elements in the long terminal repeat of reticuloendotheliosis virus: cooperative DNA binding of promoter- and enhancer-specific factors. Mol Cell Biol. 1988 Dec;8(12):5232–5244. doi: 10.1128/mcb.8.12.5232. [DOI] [PMC free article] [PubMed] [Google Scholar]
  9. Holden V. R., Yalamanchili R. R., Harty R. N., O'Callaghan D. J. Identification and characterization of an equine herpesvirus 1 late gene encoding a potential zinc finger. Virology. 1992 Jun;188(2):704–713. doi: 10.1016/0042-6822(92)90525-t. [DOI] [PubMed] [Google Scholar]
  10. Isfort R. J., Qian Z., Jones D., Silva R. F., Witter R., Kung H. J. Integration of multiple chicken retroviruses into multiple chicken herpesviruses: herpesviral gD as a common target of integration. Virology. 1994 Aug 15;203(1):125–133. doi: 10.1006/viro.1994.1462. [DOI] [PubMed] [Google Scholar]
  11. Isfort R. J., Witter R., Kung H. J. Retrovirus insertion into herpesviruses. Trends Microbiol. 1994 May;2(5):174–177. doi: 10.1016/0966-842x(94)90668-8. [DOI] [PubMed] [Google Scholar]
  12. Isfort R., Jones D., Kost R., Witter R., Kung H. J. Retrovirus insertion into herpesvirus in vitro and in vivo. Proc Natl Acad Sci U S A. 1992 Feb 1;89(3):991–995. doi: 10.1073/pnas.89.3.991. [DOI] [PMC free article] [PubMed] [Google Scholar]
  13. Isfort R., Witter R. L., Kung H. J. C-myc activation in an unusual retrovirus-induced avian T-lymphoma resembling Marek's disease: proviral insertion 5' of exon one enhances the expression of an intron promoter. Oncogene Res. 1987;2(1):81–94. [PubMed] [Google Scholar]
  14. Jones D., Isfort R., Witter R., Kost R., Kung H. J. Retroviral insertions into a herpesvirus are clustered at the junctions of the short repeat and short unique sequences. Proc Natl Acad Sci U S A. 1993 May 1;90(9):3855–3859. doi: 10.1073/pnas.90.9.3855. [DOI] [PMC free article] [PubMed] [Google Scholar]
  15. Kashanchi F., Thompson J., Sadaie M. R., Doniger J., Duvall J., Brady J. N., Rosenthal L. J. Transcriptional activation of minimal HIV-1 promoter by ORF-1 protein expressed from the SalI-L fragment of human herpesvirus 6. Virology. 1994 May 15;201(1):95–106. doi: 10.1006/viro.1994.1269. [DOI] [PubMed] [Google Scholar]
  16. Kost R., Jones D., Isfort R., Witter R., Kung H. J. Retrovirus insertion into herpesvirus: characterization of a Marek's disease virus harboring a solo LTR. Virology. 1993 Jan;192(1):161–169. doi: 10.1006/viro.1993.1018. [DOI] [PubMed] [Google Scholar]
  17. Kozak M. A consideration of alternative models for the initiation of translation in eukaryotes. Crit Rev Biochem Mol Biol. 1992;27(4-5):385–402. doi: 10.3109/10409239209082567. [DOI] [PubMed] [Google Scholar]
  18. Maotani K., Kanamori A., Ikuta K., Ueda S., Kato S., Hirai K. Amplification of a tandem direct repeat within inverted repeats of Marek's disease virus DNA during serial in vitro passage. J Virol. 1986 May;58(2):657–660. doi: 10.1128/jvi.58.2.657-660.1986. [DOI] [PMC free article] [PubMed] [Google Scholar]
  19. McGeoch D. J., Dolan A., Donald S., Rixon F. J. Sequence determination and genetic content of the short unique region in the genome of herpes simplex virus type 1. J Mol Biol. 1985 Jan 5;181(1):1–13. doi: 10.1016/0022-2836(85)90320-1. [DOI] [PubMed] [Google Scholar]
  20. McKnight S. L., Kingsbury R. Transcriptional control signals of a eukaryotic protein-coding gene. Science. 1982 Jul 23;217(4557):316–324. doi: 10.1126/science.6283634. [DOI] [PubMed] [Google Scholar]
  21. Meignier B., Longnecker R., Mavromara-Nazos P., Sears A. E., Roizman B. Virulence of and establishment of latency by genetically engineered deletion mutants of herpes simplex virus 1. Virology. 1988 Jan;162(1):251–254. doi: 10.1016/0042-6822(88)90417-5. [DOI] [PubMed] [Google Scholar]
  22. Nicholas J., Martin M. E. Nucleotide sequence analysis of a 38.5-kilobase-pair region of the genome of human herpesvirus 6 encoding human cytomegalovirus immediate-early gene homologs and transactivating functions. J Virol. 1994 Feb;68(2):597–610. doi: 10.1128/jvi.68.2.597-610.1994. [DOI] [PMC free article] [PubMed] [Google Scholar]
  23. Noori-Daloii M. R., Swift R. A., Kung H. J., Crittenden L. B., Witter R. L. Specific integration of REV proviruses in avian bursal lymphomas. Nature. 1981 Dec 10;294(5841):574–576. doi: 10.1038/294574a0. [DOI] [PubMed] [Google Scholar]
  24. Parcells M. S., Anderson A. S., Cantello J. L., Morgan R. W. Characterization of Marek's disease virus insertion and deletion mutants that lack US1 (ICP22 homolog), US10, and/or US2 and neighboring short-component open reading frames. J Virol. 1994 Dec;68(12):8239–8253. doi: 10.1128/jvi.68.12.8239-8253.1994. [DOI] [PMC free article] [PubMed] [Google Scholar]
  25. Parcells M. S., Anderson A. S., Morgan T. W. Retention of oncogenicity by a Marek's disease virus mutant lacking six unique short region genes. J Virol. 1995 Dec;69(12):7888–7898. doi: 10.1128/jvi.69.12.7888-7898.1995. [DOI] [PMC free article] [PubMed] [Google Scholar]
  26. Rall G. F., Kupershmidt S., Sugg N., Veach R. A., Ben-Porat T. Functions of the sequences at the ends of the inverted repeats of pseudorabies virus. J Virol. 1992 Mar;66(3):1506–1519. doi: 10.1128/jvi.66.3.1506-1519.1992. [DOI] [PMC free article] [PubMed] [Google Scholar]
  27. Reicin A., Yang J. Q., Marcu K. B., Fleissner E., Koehne C. F., O'Donnell P. V. Deregulation of the c-myc oncogene in virus-induced thymic lymphomas of AKR/J mice. Mol Cell Biol. 1986 Nov;6(11):4088–4092. doi: 10.1128/mcb.6.11.4088. [DOI] [PMC free article] [PubMed] [Google Scholar]
  28. Ridgway A. A. Reticuloendotheliosis virus long terminal repeat elements are efficient promoters in cells of various species and tissue origin, including human lymphoid cells. Gene. 1992 Nov 16;121(2):213–218. doi: 10.1016/0378-1119(92)90124-8. [DOI] [PubMed] [Google Scholar]
  29. Ridgway A. A., Swift R. A., Kung H. J., Fujita D. J. In vitro transcription analysis of the viral promoter involved in c-myc activation in chicken B lymphomas: detection and mapping of two RNA initiation sites within the reticuloendotheliosis virus long terminal repeat. J Virol. 1985 Apr;54(1):161–170. doi: 10.1128/jvi.54.1.161-170.1985. [DOI] [PMC free article] [PubMed] [Google Scholar]
  30. Sakaguchi M., Urakawa T., Hirayama Y., Miki N., Yamamoto M., Hirai K. Sequence determination and genetic content of an 8.9-kb restriction fragment in the short unique region and the internal inverted repeat of Marek's disease virus type 1 DNA. Virus Genes. 1992 Nov;6(4):365–378. doi: 10.1007/BF01703085. [DOI] [PubMed] [Google Scholar]
  31. Sanger F., Nicklen S., Coulson A. R. DNA sequencing with chain-terminating inhibitors. Proc Natl Acad Sci U S A. 1977 Dec;74(12):5463–5467. doi: 10.1073/pnas.74.12.5463. [DOI] [PMC free article] [PubMed] [Google Scholar]
  32. Silva R. F., Witter R. L. Genomic expansion of Marek's disease virus DNA is associated with serial in vitro passage. J Virol. 1985 Jun;54(3):690–696. doi: 10.1128/jvi.54.3.690-696.1985. [DOI] [PMC free article] [PubMed] [Google Scholar]
  33. Stasiak P. C., Mocarski E. S. Transactivation of the cytomegalovirus ICP36 gene promoter requires the alpha gene product TRS1 in addition to IE1 and IE2. J Virol. 1992 Feb;66(2):1050–1058. doi: 10.1128/jvi.66.2.1050-1058.1992. [DOI] [PMC free article] [PubMed] [Google Scholar]
  34. Swift R. A., Boerkoel C., Ridgway A., Fujita D. J., Dodgson J. B., Kung H. J. B-lymphoma induction by reticuloendotheliosis virus: characterization of a mutated chicken syncytial virus provirus involved in c-myc activation. J Virol. 1987 Jul;61(7):2084–2090. doi: 10.1128/jvi.61.7.2084-2090.1987. [DOI] [PMC free article] [PubMed] [Google Scholar]
  35. Thomas P. S. Hybridization of denatured RNA and small DNA fragments transferred to nitrocellulose. Proc Natl Acad Sci U S A. 1980 Sep;77(9):5201–5205. doi: 10.1073/pnas.77.9.5201. [DOI] [PMC free article] [PubMed] [Google Scholar]
  36. Tomley F., Binns M., Campbell J., Boursnell M. Sequence analysis of an 11.2 kilobase, near-terminal, BamHI fragment of fowlpox virus. J Gen Virol. 1988 May;69(Pt 5):1025–1040. doi: 10.1099/0022-1317-69-5-1025. [DOI] [PubMed] [Google Scholar]
  37. Tsichlis P. N., Lazo P. A. Virus-host interactions and the pathogenesis of murine and human oncogenic retroviruses. Curr Top Microbiol Immunol. 1991;171:95–171. doi: 10.1007/978-3-642-76524-7_5. [DOI] [PubMed] [Google Scholar]
  38. Umene K. Transition from a heterozygous to a homozygous state of a pair of loci in the inverted repeat sequences of the L component of the herpes simplex virus type 1 genome. J Virol. 1987 Apr;61(4):1187–1192. doi: 10.1128/jvi.61.4.1187-1192.1987. [DOI] [PMC free article] [PubMed] [Google Scholar]
  39. Varmuza S. L., Smiley J. R. Unstable heterozygosity in a diploid region of herpes simplex virus DNA. J Virol. 1984 Feb;49(2):356–362. doi: 10.1128/jvi.49.2.356-362.1984. [DOI] [PMC free article] [PubMed] [Google Scholar]
  40. Witter R. L., Offenbecker L. Nonprotective and temperature-sensitive variants of Marek's disease vaccine viruses. J Natl Cancer Inst. 1979 Jan;62(1):143–151. [PubMed] [Google Scholar]
  41. Witter R. L., Salter D. W. Vertical transmission of reticuloendotheliosis virus in breeder turkeys. Avian Dis. 1989 Apr-Jun;33(2):226–235. [PubMed] [Google Scholar]

Articles from Journal of Virology are provided here courtesy of American Society for Microbiology (ASM)

RESOURCES