Skip to main content
Journal of Virology logoLink to Journal of Virology
. 1996 Apr;70(4):2497–2502. doi: 10.1128/jvi.70.4.2497-2502.1996

Pseudotransduction of hepatocytes by using concentrated pseudotyped vesicular stomatitis virus G glycoprotein (VSV-G)-Moloney murine leukemia virus-derived retrovirus vectors: comparison of VSV-G and amphotropic vectors for hepatic gene transfer.

M L Liu 1, B L Winther 1, M A Kay 1
PMCID: PMC190094  PMID: 8642678

Abstract

Recombinant retrovirus vectors are widely used for gene transfer studies. The recent development of a pseudotyped Moloney murine leukemia virus vector that contains the G envelope protein from the vesicular stomatitis virus allows for efficient concentration of vector and offers hope for potential use of these vectors for gene expression in vivo. A standard amphotropic vector expressing a serum marker protein, human alpha 1-antitrypsin, was infused into regenerating mouse liver and was 10-fold more efficient at achieving stable gene expression than was an equivalent pseudotyped vector. Discrepant results were obtained with cultured hepatocytes infected with an Escherichia coli beta-galactosidase-producing pseudotype and amphotropic vector. High rates of beta-galactosidase-positive cells were detected with the vesicular stomatitis virus G glycoprotein vector under culture conditions known to be relatively nonpermissive for retrovirus-mediated gene transfer. Subsequent studies demonstrated that beta-galactosidase protein was concentrated and copurified during pseudotype vector preparation, resulting in high rates of protein transfer rather than stable gene transfer, a process referred to as pseudotransduction. The cotransfer of protein with concentrated pseudotyped retroviruses indicates that caution must be used when interpreting gene transduction efficiencies in gene therapy experiments.

Full Text

The Full Text of this article is available as a PDF (201.5 KB).

Selected References

These references are in PubMed. This may not be the complete list of references from this article.

  1. Burns J. C., Friedmann T., Driever W., Burrascano M., Yee J. K. Vesicular stomatitis virus G glycoprotein pseudotyped retroviral vectors: concentration to very high titer and efficient gene transfer into mammalian and nonmammalian cells. Proc Natl Acad Sci U S A. 1993 Sep 1;90(17):8033–8037. doi: 10.1073/pnas.90.17.8033. [DOI] [PMC free article] [PubMed] [Google Scholar]
  2. Fassati A., Wells D. J., Walsh F. S., Dickson G. Efficiency of in vivo gene transfer using murine retroviral vectors is strain-dependent in mice. Hum Gene Ther. 1995 Sep;6(9):1177–1183. doi: 10.1089/hum.1995.6.9-1177. [DOI] [PubMed] [Google Scholar]
  3. Friedmann T., Xu L., Wolff J., Yee J. K., Miyanohara A. Retrovirus vector-mediated gene transfer into hepatocytes. Mol Biol Med. 1989 Apr;6(2):117–125. [PubMed] [Google Scholar]
  4. Kay M. A., Li Q., Liu T. J., Leland F., Toman C., Finegold M., Woo S. L. Hepatic gene therapy: persistent expression of human alpha 1-antitrypsin in mice after direct gene delivery in vivo. Hum Gene Ther. 1992 Dec;3(6):641–647. doi: 10.1089/hum.1992.3.6-641. [DOI] [PubMed] [Google Scholar]
  5. Kay M. A., Rothenberg S., Landen C. N., Bellinger D. A., Leland F., Toman C., Finegold M., Thompson A. R., Read M. S., Brinkhous K. M. In vivo gene therapy of hemophilia B: sustained partial correction in factor IX-deficient dogs. Science. 1993 Oct 1;262(5130):117–119. doi: 10.1126/science.8211118. [DOI] [PubMed] [Google Scholar]
  6. Ledley F. D., Darlington G. J., Hahn T., Woo S. L. Retroviral gene transfer into primary hepatocytes: implications for genetic therapy of liver-specific functions. Proc Natl Acad Sci U S A. 1987 Aug;84(15):5335–5339. doi: 10.1073/pnas.84.15.5335. [DOI] [PMC free article] [PubMed] [Google Scholar]
  7. Lieber A., Peeters M. J., Gown A., Perkins J., Kay M. A. A modified urokinase plasminogen activator induces liver regeneration without bleeding. Hum Gene Ther. 1995 Aug;6(8):1029–1037. doi: 10.1089/hum.1995.6.8-1029. [DOI] [PubMed] [Google Scholar]
  8. Lieber A., Vrancken Peeters M. J., Meuse L., Fausto N., Perkins J., Kay M. A. Adenovirus-mediated urokinase gene transfer induces liver regeneration and allows for efficient retrovirus transduction of hepatocytes in vivo. Proc Natl Acad Sci U S A. 1995 Jun 20;92(13):6210–6214. doi: 10.1073/pnas.92.13.6210. [DOI] [PMC free article] [PubMed] [Google Scholar]
  9. Liu T. J., Kay M. A., Darlington G. J., Woo S. L. Reconstitution of enzymatic activity in hepatocytes of phenylalanine hydroxylase-deficient mice. Somat Cell Mol Genet. 1992 Jan;18(1):89–96. doi: 10.1007/BF01233451. [DOI] [PubMed] [Google Scholar]
  10. Miyanohara A., Yee J. K., Bouic K., LaPorte P., Friedmann T. Efficient in vivo transduction of the neonatal mouse liver with pseudotyped retroviral vectors. Gene Ther. 1995 Mar;2(2):138–142. [PubMed] [Google Scholar]
  11. Pages J. C., Andreoletti M., Bennoun M., Vons C., Elcheroth J., Lehn P., Houssin D., Chapman J., Briand P., Benarous R. Efficient retroviral-mediated gene transfer into primary culture of murine and human hepatocytes: expression of the LDL receptor. Hum Gene Ther. 1995 Jan;6(1):21–30. doi: 10.1089/hum.1995.6.1-21. [DOI] [PubMed] [Google Scholar]
  12. Ponder K. P., Dunbar R. P., Wilson D. R., Darlington G. J., Woo S. L. Evaluation of relative promoter strength in primary hepatocytes using optimized lipofection. Hum Gene Ther. 1991 Spring;2(1):41–52. doi: 10.1089/hum.1991.2.1-41. [DOI] [PubMed] [Google Scholar]
  13. Ponder K. P., Gupta S., Leland F., Darlington G., Finegold M., DeMayo J., Ledley F. D., Chowdhury J. R., Woo S. L. Mouse hepatocytes migrate to liver parenchyma and function indefinitely after intrasplenic transplantation. Proc Natl Acad Sci U S A. 1991 Feb 15;88(4):1217–1221. doi: 10.1073/pnas.88.4.1217. [DOI] [PMC free article] [PubMed] [Google Scholar]
  14. Rother R. P., Squinto S. P., Mason J. M., Rollins S. A. Protection of retroviral vector particles in human blood through complement inhibition. Hum Gene Ther. 1995 Apr;6(4):429–435. doi: 10.1089/hum.1995.6.4-429. [DOI] [PubMed] [Google Scholar]
  15. Takeuchi Y., Cosset F. L., Lachmann P. J., Okada H., Weiss R. A., Collins M. K. Type C retrovirus inactivation by human complement is determined by both the viral genome and the producer cell. J Virol. 1994 Dec;68(12):8001–8007. doi: 10.1128/jvi.68.12.8001-8007.1994. [DOI] [PMC free article] [PubMed] [Google Scholar]
  16. Wilson J. M., Jefferson D. M., Chowdhury J. R., Novikoff P. M., Johnston D. E., Mulligan R. C. Retrovirus-mediated transduction of adult hepatocytes. Proc Natl Acad Sci U S A. 1988 May;85(9):3014–3018. doi: 10.1073/pnas.85.9.3014. [DOI] [PMC free article] [PubMed] [Google Scholar]
  17. Yang Y., Vanin E. F., Whitt M. A., Fornerod M., Zwart R., Schneiderman R. D., Grosveld G., Nienhuis A. W. Inducible, high-level production of infectious murine leukemia retroviral vector particles pseudotyped with vesicular stomatitis virus G envelope protein. Hum Gene Ther. 1995 Sep;6(9):1203–1213. doi: 10.1089/hum.1995.6.9-1203. [DOI] [PubMed] [Google Scholar]
  18. Yee J. K., Friedmann T., Burns J. C. Generation of high-titer pseudotyped retroviral vectors with very broad host range. Methods Cell Biol. 1994;43(Pt A):99–112. doi: 10.1016/s0091-679x(08)60600-7. [DOI] [PubMed] [Google Scholar]
  19. Yee J. K., Miyanohara A., LaPorte P., Bouic K., Burns J. C., Friedmann T. A general method for the generation of high-titer, pantropic retroviral vectors: highly efficient infection of primary hepatocytes. Proc Natl Acad Sci U S A. 1994 Sep 27;91(20):9564–9568. doi: 10.1073/pnas.91.20.9564. [DOI] [PMC free article] [PubMed] [Google Scholar]

Articles from Journal of Virology are provided here courtesy of American Society for Microbiology (ASM)

RESOURCES