Skip to main content
Journal of Virology logoLink to Journal of Virology
. 1996 Apr;70(4):2508–2515. doi: 10.1128/jvi.70.4.2508-2515.1996

Genome organization of the Kresse strain of porcine parvovirus: identification of the allotropic determinant and comparison with those of NADL-2 and field isolates.

J Bergeron 1, B Hébert 1, P Tijssen 1
PMCID: PMC190096  PMID: 8642680

Abstract

The Kresse strain of porcine parvovirus (PPV) was cloned into pUC19, and independent infectious clones were sequenced. The PPV Kresse and NADL-2 strains, which have different pathogenicities, shared an identical genomic organization and a high degree of sequence identity. Partial genomes (1.5 or 1.6 kb) of 15 field isolates were also amplified by PCR in regions with significant sequence differences between the laboratory strains. Five amino acid differences were consistently present within the VP1/VP2 coding region of the Kresse strain and virulent field isolates. A number of inconsistent point mutations were also found throughout the genomes of field isolates. In addition, among those with the vaccine amino acid profile, all but one isolate (IAF-3) contained a 127-bp noncoding direct repeat downstream of the capsid protein gene. The one exception was also the only vaccine-type PPV obtained from a mummified fetus. In order to identify genetic elements responsible for the distinct tropism (and possibly the pathology) of the Kresse strain, in vitro cell systems which differentiated the virulent from the vaccinal strains were established. Subsequently, chimeric infectious clones of the Kresse and NADL-2 strains were used to identify the allotropic determinant located in the VP1/VP2 region. The transfer of the BglII fragment of the Kresse genome, containing three amino acid differences, into the NADL-2 background, or the opposite construct, caused the phenotype of the target genome to revert to that of the parent strain of the BglII fragment. Prediction of the localization of amino acid differences on the basis of canine parvovirus capsid structure indicates that each is located on or near the outer surface of the virion. In particular, the position of one mutation (S-436-->P) maps by analogy to the threefold spike, the most accessible region of the capsid.

Full Text

The Full Text of this article is available as a PDF (404.4 KB).

Selected References

These references are in PubMed. This may not be the complete list of references from this article.

  1. Antonietti J. P., Sahli R., Beard P., Hirt B. Characterization of the cell type-specific determinant in the genome of minute virus of mice. J Virol. 1988 Feb;62(2):552–557. doi: 10.1128/jvi.62.2.552-557.1988. [DOI] [PMC free article] [PubMed] [Google Scholar]
  2. Astell C. R., Gardiner E. M., Tattersall P. DNA sequence of the lymphotropic variant of minute virus of mice, MVM(i), and comparison with the DNA sequence of the fibrotropic prototype strain. J Virol. 1986 Feb;57(2):656–669. doi: 10.1128/jvi.57.2.656-669.1986. [DOI] [PMC free article] [PubMed] [Google Scholar]
  3. Ball-Goodrich L. J., Moir R. D., Tattersall P. Parvoviral target cell specificity: acquisition of fibrotropism by a mutant of the lymphotropic strain of minute virus of mice involves multiple amino acid substitutions within the capsid. Virology. 1991 Sep;184(1):175–186. doi: 10.1016/0042-6822(91)90834-x. [DOI] [PubMed] [Google Scholar]
  4. Bergeron J., Menezes J., Tijssen P. Genomic organization and mapping of transcription and translation products of the NADL-2 strain of porcine parvovirus. Virology. 1993 Nov;197(1):86–98. doi: 10.1006/viro.1993.1569. [DOI] [PubMed] [Google Scholar]
  5. Bouillant A. M., Genest P., Greig A. S. Nontumoral, benign ad malignant stages of transformation of a diploid pig cell line. A review. Can J Comp Med. 1981 Jul;45(3):279–290. [PMC free article] [PubMed] [Google Scholar]
  6. Chapman M. S. Mapping the surface properties of macromolecules. Protein Sci. 1993 Mar;2(3):459–469. doi: 10.1002/pro.5560020318. [DOI] [PMC free article] [PubMed] [Google Scholar]
  7. Choi C. S., Molitor T. W., Joo H. S., Gunther R. Pathogenicity of a skin isolate of porcine parvovirus in swine fetuses. Vet Microbiol. 1987 Oct;15(1-2):19–29. doi: 10.1016/0378-1135(87)90125-8. [DOI] [PubMed] [Google Scholar]
  8. Cotmore S. F., Tattersall P. A genome-linked copy of the NS-1 polypeptide is located on the outside of infectious parvovirus particles. J Virol. 1989 Sep;63(9):3902–3911. doi: 10.1128/jvi.63.9.3902-3911.1989. [DOI] [PMC free article] [PubMed] [Google Scholar]
  9. Cutlip R. C., Mengeling W. L. Pathogenesis of in utero infection: experimental infection of eight- and ten-week-old porcine fetuses with porcine parvovirus. Am J Vet Res. 1975 Dec;36(12):1751–1754. [PubMed] [Google Scholar]
  10. Dunne H. W., Gobble J. L., Hokanson J. F., Kradel D. C., Bubash G. R. Porcine reproductive failure associated with a newly identified "SMEDI" group of picorna viruses. Am J Vet Res. 1965 Nov;26(115):1284–1297. [PubMed] [Google Scholar]
  11. Gardiner E. M., Tattersall P. Evidence that developmentally regulated control of gene expression by a parvoviral allotropic determinant is particle mediated. J Virol. 1988 May;62(5):1713–1722. doi: 10.1128/jvi.62.5.1713-1722.1988. [DOI] [PMC free article] [PubMed] [Google Scholar]
  12. Gardiner E. M., Tattersall P. Mapping of the fibrotropic and lymphotropic host range determinants of the parvovirus minute virus of mice. J Virol. 1988 Aug;62(8):2605–2613. doi: 10.1128/jvi.62.8.2605-2613.1988. [DOI] [PMC free article] [PubMed] [Google Scholar]
  13. Gu M. L., Chen F. X., Rhode S. L. Parvovirus H-1 P38 promoter requires the trans-activation region (tar), an SP1 site, and a TATA box for full activity. Virology. 1992 Mar;187(1):10–17. doi: 10.1016/0042-6822(92)90290-6. [DOI] [PubMed] [Google Scholar]
  14. Kresse J. I., Taylor W. D., Stewart W. W., Eernisse K. A. Parvovirus infection in pigs with necrotic and vesicle-like lesions. Vet Microbiol. 1985 Dec;10(6):525–531. doi: 10.1016/0378-1135(85)90061-6. [DOI] [PubMed] [Google Scholar]
  15. Mengeling W. L., Cutlip R. C. Pathogenesis of in utero infection: experimental infection of five-week-old porcine fetuses with porcine parvovirus. Am J Vet Res. 1975 Aug;36(08):1173–1177. [PubMed] [Google Scholar]
  16. Mengeling W. L., Cutlip R. C. Reproductive disease experimentally induced by exposing pregnant gilts to porcine parvovirus. Am J Vet Res. 1976 Dec;37(12):1393–1400. [PubMed] [Google Scholar]
  17. Mengeling W. L., Pejsak Z., Paul P. S. Biological assay of attenuated strain NADL-2 and virulent strain NADL-8 of porcine parvovirus. Am J Vet Res. 1984 Nov;45(11):2403–2407. [PubMed] [Google Scholar]
  18. Merchlinsky M. J., Tattersall P. J., Leary J. J., Cotmore S. F., Gardiner E. M., Ward D. C. Construction of an infectious molecular clone of the autonomous parvovirus minute virus of mice. J Virol. 1983 Jul;47(1):227–232. doi: 10.1128/jvi.47.1.227-232.1983. [DOI] [PMC free article] [PubMed] [Google Scholar]
  19. Oraveerakul K., Choi C. S., Molitor T. W. Restriction of porcine parvovirus replication in nonpermissive cells. J Virol. 1992 Feb;66(2):715–722. doi: 10.1128/jvi.66.2.715-722.1992. [DOI] [PMC free article] [PubMed] [Google Scholar]
  20. Parrish C. R., Carmichael L. E. Characterization and recombination mapping of an antigenic and host range mutation of canine parvovirus. Virology. 1986 Jan 15;148(1):121–132. doi: 10.1016/0042-6822(86)90408-3. [DOI] [PubMed] [Google Scholar]
  21. Parrish C. R. Mapping specific functions in the capsid structure of canine parvovirus and feline panleukopenia virus using infectious plasmid clones. Virology. 1991 Jul;183(1):195–205. doi: 10.1016/0042-6822(91)90132-u. [DOI] [PubMed] [Google Scholar]
  22. Paul P. S., Mengeling W. L. Evaluation of a modified live-virus vaccine for the prevention of porcine parvovirus-induced reproductive disease in swine. Am J Vet Res. 1980 Dec;41(12):2007–2011. [PubMed] [Google Scholar]
  23. Rhode S. L., 3rd, Richard S. M. Characterization of the trans-activation-responsive element of the parvovirus H-1 P38 promoter. J Virol. 1987 Sep;61(9):2807–2815. doi: 10.1128/jvi.61.9.2807-2815.1987. [DOI] [PMC free article] [PubMed] [Google Scholar]
  24. Ridpath J. F., Mengeling W. L. Uptake of porcine parvovirus into host and nonhost cells suggests host specificity is determined by intracellular factors. Virus Res. 1988 Apr;10(1):17–27. doi: 10.1016/0168-1702(88)90054-8. [DOI] [PubMed] [Google Scholar]
  25. Sakurai M., Nishimori T., Ushimi C., Nakajima H. Nucleotide sequence of capsid protein gene of porcine parvovirus. Virus Res. 1989 May;13(1):79–86. doi: 10.1016/0168-1702(89)90088-9. [DOI] [PubMed] [Google Scholar]
  26. Salvino R., Skiadopoulos M., Faust E. A., Tam P., Shade R. O., Astell C. R. Two spatially distinct genetic elements constitute a bipartite DNA replication origin in the minute virus of mice genome. J Virol. 1991 Mar;65(3):1352–1363. doi: 10.1128/jvi.65.3.1352-1363.1991. [DOI] [PMC free article] [PubMed] [Google Scholar]
  27. Sanger F., Nicklen S., Coulson A. R. DNA sequencing with chain-terminating inhibitors. Proc Natl Acad Sci U S A. 1977 Dec;74(12):5463–5467. doi: 10.1073/pnas.74.12.5463. [DOI] [PMC free article] [PubMed] [Google Scholar]
  28. Truyen U., Agbandje M., Parrish C. R. Characterization of the feline host range and a specific epitope of feline panleukopenia virus. Virology. 1994 May 1;200(2):494–503. doi: 10.1006/viro.1994.1212. [DOI] [PubMed] [Google Scholar]
  29. Tsao J., Chapman M. S., Agbandje M., Keller W., Smith K., Wu H., Luo M., Smith T. J., Rossmann M. G., Compans R. W. The three-dimensional structure of canine parvovirus and its functional implications. Science. 1991 Mar 22;251(5000):1456–1464. doi: 10.1126/science.2006420. [DOI] [PubMed] [Google Scholar]
  30. Vasudevacharya J., Compans R. W. The NS and capsid genes determine the host range of porcine parvovirus. Virology. 1992 Apr;187(2):515–524. doi: 10.1016/0042-6822(92)90454-w. [DOI] [PubMed] [Google Scholar]

Articles from Journal of Virology are provided here courtesy of American Society for Microbiology (ASM)

RESOURCES