Abstract
Mutant v-erbB products of avian c-erbB1 have previously been used to correlate structural domains of the receptor encoded by this proto-oncogene with tissue-specific transformation potential. In these studies, deletion of the ligand-binding domain of the receptor has been shown to be required for transformation of erythroblasts, fibroblasts, and endothelial cells. It has, therefore, been postulated that deletion of this domain results in an allosteric change in the receptor analogous to the ligand-bound state of the epidermal growth factor receptor; i.e., it induces a receptor conformation that is constitutively active with respect to mitogenic signaling. While oncogenic v-erbB products have been shown to be expressed on the cell surface of both fibroblasts and erythroblasts, no comprehensive analysis of the oligomeric potential of these products has been conducted. Since the first event known to follow epidermal growth factor binding to its receptor is oligomerization, and receptor dimerization has been correlated with mitogenic signaling, we have carefully analyzed the ability of several v-erbB products to oligomerize in the three target cell types transformed by these oncogenes. In this report, we demonstrate the v-erbB products can efficiently homodimerize in all three target tissues, that this dimerization is ligand independent and occurs at the cell surface, and that there is no apparent correlation between v-erbB dimerization and transformation of avian fibroblasts. Furthermore, both oncogenic and nononcogenic v-erbB products can heterodimerize with the native c-erbB1 product in chicken embryo fibroblasts, suggesting that heterodimerization between v-erB and native c-erbB1 is not sufficient to result in c-erbB1-mediated sarcomagenesis.
Full Text
The Full Text of this article is available as a PDF (790.0 KB).
Selected References
These references are in PubMed. This may not be the complete list of references from this article.
- Anzano M. A., Rieman D., Prichett W., Bowen-Pope D. F., Greig R. Growth factor production by human colon carcinoma cell lines. Cancer Res. 1989 Jun 1;49(11):2898–2904. [PubMed] [Google Scholar]
- Bargmann C. I., Weinberg R. A. Increased tyrosine kinase activity associated with the protein encoded by the activated neu oncogene. Proc Natl Acad Sci U S A. 1988 Aug;85(15):5394–5398. doi: 10.1073/pnas.85.15.5394. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Bargmann C. I., Weinberg R. A. Oncogenic activation of the neu-encoded receptor protein by point mutation and deletion. EMBO J. 1988 Jul;7(7):2043–2052. doi: 10.1002/j.1460-2075.1988.tb03044.x. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Bell S. M., Connolly D. C., Maihle N. J., Degen J. L. Differential modulation of plasminogen activator gene expression by oncogene-encoded protein tyrosine kinases. Mol Cell Biol. 1993 Sep;13(9):5888–5897. doi: 10.1128/mcb.13.9.5888. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Berchuck A., Rodriguez G., Kamel A., Soper J. T., Clarke-Pearson D. L., Bast R. C., Jr Expression of epidermal growth factor receptor and HER-2/neu in normal and neoplastic cervix, vulva, and vagina. Obstet Gynecol. 1990 Sep;76(3 Pt 1):381–387. [PubMed] [Google Scholar]
- Berger M. S., Gullick W. J., Greenfield C., Evans S., Addis B. J., Waterfield M. D. Epidermal growth factor receptors in lung tumours. J Pathol. 1987 Aug;152(4):297–307. doi: 10.1002/path.1711520408. [DOI] [PubMed] [Google Scholar]
- Beug H., Doederlein G., Freudenstein C., Graf T. Erythroblast cell lines transformed by a temperature-sensitive mutant of avian erythroblastosis virus: a model system to study erythroid differentiation in vitro. J Cell Physiol Suppl. 1982;1:195–207. doi: 10.1002/jcp.1041130427. [DOI] [PubMed] [Google Scholar]
- Beug H., Hayman M. J. Temperature-sensitive mutants of avian erythroblastosis virus: surface expression of the erbB product correlates with transformation. Cell. 1984 Apr;36(4):963–972. doi: 10.1016/0092-8674(84)90046-1. [DOI] [PubMed] [Google Scholar]
- Biswas R., Basu M., Sen-Majumdar A., Das M. Intrapeptide autophosphorylation of the epidermal growth factor receptor: regulation of kinase catalytic function by receptor dimerization. Biochemistry. 1985 Jul 2;24(14):3795–3802. doi: 10.1021/bi00335a056. [DOI] [PubMed] [Google Scholar]
- Brown P. M., Debanne M. T., Grothe S., Bergsma D., Caron M., Kay C., O'Connor-McCourt M. D. The extracellular domain of the epidermal growth factor receptor. Studies on the affinity and stoichiometry of binding, receptor dimerization and a binding-domain mutant. Eur J Biochem. 1994 Oct 1;225(1):223–233. doi: 10.1111/j.1432-1033.1994.00223.x. [DOI] [PubMed] [Google Scholar]
- Carlberg K., Rohrschneider L. The effect of activating mutations on dimerization, tyrosine phosphorylation and internalization of the macrophage colony stimulating factor receptor. Mol Biol Cell. 1994 Jan;5(1):81–95. doi: 10.1091/mbc.5.1.81. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Carpenter C. D., Ingraham H. A., Cochet C., Walton G. M., Lazar C. S., Sowadski J. M., Rosenfeld M. G., Gill G. N. Structural analysis of the transmembrane domain of the epidermal growth factor receptor. J Biol Chem. 1991 Mar 25;266(9):5750–5755. [PubMed] [Google Scholar]
- Carter T. H., Kung H. J. Tissue-specific transformation by oncogenic mutants of epidermal growth factor receptor. Crit Rev Oncog. 1994;5(4):389–428. doi: 10.1615/critrevoncog.v5.i4.40. [DOI] [PubMed] [Google Scholar]
- Chantry A. The kinase domain and membrane localization determine intracellular interactions between epidermal growth factor receptors. J Biol Chem. 1995 Feb 17;270(7):3068–3073. [PubMed] [Google Scholar]
- Connolly D. C., Toutenhoofd S. L., Maihle N. J. Tyrosine kinase activity may be necessary but is not sufficient for c-erbB1-mediated tissue-specific tumorigenicity. J Virol. 1994 Oct;68(10):6804–6810. doi: 10.1128/jvi.68.10.6804-6810.1994. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Derynck R., Goeddel D. V., Ullrich A., Gutterman J. U., Williams R. D., Bringman T. S., Berger W. H. Synthesis of messenger RNAs for transforming growth factors alpha and beta and the epidermal growth factor receptor by human tumors. Cancer Res. 1987 Feb 1;47(3):707–712. [PubMed] [Google Scholar]
- Di Fiore P. P., Pierce J. H., Fleming T. P., Hazan R., Ullrich A., King C. R., Schlessinger J., Aaronson S. A. Overexpression of the human EGF receptor confers an EGF-dependent transformed phenotype to NIH 3T3 cells. Cell. 1987 Dec 24;51(6):1063–1070. doi: 10.1016/0092-8674(87)90592-7. [DOI] [PubMed] [Google Scholar]
- Dou Y., Hoffman P., Hoffman B. L., Carlin C. Ligand-induced protein tyrosine kinase activity in living cells coexpressing intact EGF receptors and receptors with an extensive cytosolic deletion. J Cell Physiol. 1992 Nov;153(2):402–407. doi: 10.1002/jcp.1041530220. [DOI] [PubMed] [Google Scholar]
- Frank S. J., Gilliland G., Van Epps C. Treatment of IM-9 cells with human growth hormone (GH) promotes rapid disulfide linkage of the GH receptor. Endocrinology. 1994 Jul;135(1):148–156. doi: 10.1210/endo.135.1.8013347. [DOI] [PubMed] [Google Scholar]
- Freeman M. R., Washecka R., Chung L. W. Aberrant expression of epidermal growth factor receptor and HER-2 (erbB-2) messenger RNAs in human renal cancers. Cancer Res. 1989 Nov 15;49(22):6221–6225. [PubMed] [Google Scholar]
- Graham F. L., van der Eb A. J. A new technique for the assay of infectivity of human adenovirus 5 DNA. Virology. 1973 Apr;52(2):456–467. doi: 10.1016/0042-6822(73)90341-3. [DOI] [PubMed] [Google Scholar]
- Hayman M. J., Beug H. Identification of a form of the avian erythroblastosis virus erb-B gene product at the cell surface. 1984 May 31-Jun 6Nature. 309(5967):460–462. doi: 10.1038/309460a0. [DOI] [PubMed] [Google Scholar]
- Hayman M. J., Enrietto P. J. Cell transformation by the epidermal growth factor receptor and v-erbB. Cancer Cells. 1991 Aug;3(8):302–307. [PubMed] [Google Scholar]
- Hayman M. J., Ramsay G. M., Savin K., Kitchener G., Graf T., Beug H. Identification and characterization of the avian erythroblastosis virus erbB gene product as a membrane glycoprotein. Cell. 1983 Feb;32(2):579–588. doi: 10.1016/0092-8674(83)90477-4. [DOI] [PubMed] [Google Scholar]
- Hughes S. H., Greenhouse J. J., Petropoulos C. J., Sutrave P. Adaptor plasmids simplify the insertion of foreign DNA into helper-independent retroviral vectors. J Virol. 1987 Oct;61(10):3004–3012. doi: 10.1128/jvi.61.10.3004-3012.1987. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Hurwitz D. R., Emanuel S. L., Nathan M. H., Sarver N., Ullrich A., Felder S., Lax I., Schlessinger J. EGF induces increased ligand binding affinity and dimerization of soluble epidermal growth factor (EGF) receptor extracellular domain. J Biol Chem. 1991 Nov 15;266(32):22035–22043. [PubMed] [Google Scholar]
- Jarrard D. F., Blitz B. F., Smith R. C., Patai B. L., Rukstalis D. B. Effect of epidermal growth factor on prostate cancer cell line PC3 growth and invasion. Prostate. 1994;24(1):46–53. doi: 10.1002/pros.2990240110. [DOI] [PubMed] [Google Scholar]
- Kashles O., Szapary D., Bellot F., Ullrich A., Schlessinger J., Schmidt A. Ligand-induced stimulation of epidermal growth factor receptor mutants with altered transmembrane regions. Proc Natl Acad Sci U S A. 1988 Dec;85(24):9567–9571. doi: 10.1073/pnas.85.24.9567. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Kashles O., Yarden Y., Fischer R., Ullrich A., Schlessinger J. A dominant negative mutation suppresses the function of normal epidermal growth factor receptors by heterodimerization. Mol Cell Biol. 1991 Mar;11(3):1454–1463. doi: 10.1128/mcb.11.3.1454. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Koland J. G., Cerione R. A. Growth factor control of epidermal growth factor receptor kinase activity via an intramolecular mechanism. J Biol Chem. 1988 Feb 15;263(5):2230–2237. [PubMed] [Google Scholar]
- Kris R. M., Lax I., Gullick W., Waterfield M. D., Ullrich A., Fridkin M., Schlessinger J. Antibodies against a synthetic peptide as a probe for the kinase activity of the avian EGF receptor and v-erbB protein. Cell. 1985 Mar;40(3):619–625. doi: 10.1016/0092-8674(85)90210-7. [DOI] [PubMed] [Google Scholar]
- Kwatra M. M., Bigner D. D., Cohn J. A. The ligand binding domain of the epidermal growth factor receptor is not required for receptor dimerization. Biochim Biophys Acta. 1992 Mar 16;1134(2):178–181. doi: 10.1016/0167-4889(92)90042-a. [DOI] [PubMed] [Google Scholar]
- Lax I., Johnson A., Howk R., Sap J., Bellot F., Winkler M., Ullrich A., Vennstrom B., Schlessinger J., Givol D. Chicken epidermal growth factor (EGF) receptor: cDNA cloning, expression in mouse cells, and differential binding of EGF and transforming growth factor alpha. Mol Cell Biol. 1988 May;8(5):1970–1978. doi: 10.1128/mcb.8.5.1970. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Lax I., Mitra A. K., Ravera C., Hurwitz D. R., Rubinstein M., Ullrich A., Stroud R. M., Schlessinger J. Epidermal growth factor (EGF) induces oligomerization of soluble, extracellular, ligand-binding domain of EGF receptor. A low resolution projection structure of the ligand-binding domain. J Biol Chem. 1991 Jul 25;266(21):13828–13833. [PubMed] [Google Scholar]
- Lemmon M. A., Schlessinger J. Regulation of signal transduction and signal diversity by receptor oligomerization. Trends Biochem Sci. 1994 Nov;19(11):459–463. doi: 10.1016/0968-0004(94)90130-9. [DOI] [PubMed] [Google Scholar]
- Li W., Schlessinger J. Platelet-derived growth factor (PDGF)-induced disulfide-linked dimerization of PDGF receptor in living cells. Mol Cell Biol. 1991 Jul;11(7):3756–3761. doi: 10.1128/mcb.11.7.3756. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Li W., Stanley E. R. Role of dimerization and modification of the CSF-1 receptor in its activation and internalization during the CSF-1 response. EMBO J. 1991 Feb;10(2):277–288. doi: 10.1002/j.1460-2075.1991.tb07948.x. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Maihle N. J., Kung H. J. C-erbB and the epidermal growth-factor receptor: a molecule with dual identity. Biochim Biophys Acta. 1989 Feb;948(3):287–304. doi: 10.1016/0304-419x(89)90003-6. [DOI] [PubMed] [Google Scholar]
- Maihle N. J., Raines M. A., Flickinger T. W., Kung H. J. Proviral insertional activation of c-erbB: differential processing of the protein products arising from two alternate transcripts. Mol Cell Biol. 1988 Nov;8(11):4868–4876. doi: 10.1128/mcb.8.11.4868. [DOI] [PMC free article] [PubMed] [Google Scholar]
- McManus M. J., Connolly D. C., Maihle N. J. Tissue- and transformation-specific phosphotyrosyl proteins in v-erbB-transformed cells. J Virol. 1995 Jun;69(6):3631–3638. doi: 10.1128/jvi.69.6.3631-3638.1995. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Morris G. L., Dodd J. G. Epidermal growth factor receptor mRNA levels in human prostatic tumors and cell lines. J Urol. 1990 Jun;143(6):1272–1274. doi: 10.1016/s0022-5347(17)40253-9. [DOI] [PubMed] [Google Scholar]
- Moscovici C., Moscovici M. G., Jimenez H., Lai M. M., Hayman M. J., Vogt P. K. Continuous tissue culture cell lines derived from chemically induced tumors of Japanese quail. Cell. 1977 May;11(1):95–103. doi: 10.1016/0092-8674(77)90320-8. [DOI] [PubMed] [Google Scholar]
- Northwood I. C., Davis R. J. Activation of the epidermal growth factor receptor tyrosine protein kinase in the absence of receptor oligomerization. J Biol Chem. 1988 Jun 5;263(16):7450–7453. [PubMed] [Google Scholar]
- Otter T., King S. M., Witman G. B. A two-step procedure for efficient electrotransfer of both high-molecular-weight (greater than 400,000) and low-molecular-weight (less than 20,000) proteins. Anal Biochem. 1987 May 1;162(2):370–377. doi: 10.1016/0003-2697(87)90406-4. [DOI] [PubMed] [Google Scholar]
- Privalsky M. L., Bishop J. M. Subcellular localization of the v-erb-B protein, the product of a transforming gene of avian erythroblastosis virus. Virology. 1984 Jun;135(2):356–368. doi: 10.1016/0042-6822(84)90192-2. [DOI] [PubMed] [Google Scholar]
- Quian X. L., Decker S. J., Greene M. I. p185c-neu and epidermal growth factor receptor associate into a structure composed of activated kinases. Proc Natl Acad Sci U S A. 1992 Feb 15;89(4):1330–1334. doi: 10.1073/pnas.89.4.1330. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Raines M. A., Maihle N. J., Moscovici C., Moscovici M. G., Kung H. J. Molecular characterization of three erbB transducing viruses generated during avian leukosis virus-induced erythroleukemia: extensive internal deletion near the kinase domain activates the fibrosarcoma- and hemangioma-inducing potentials of erbB. J Virol. 1988 Jul;62(7):2444–2452. doi: 10.1128/jvi.62.7.2444-2452.1988. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Redemann N., Holzmann B., von Rüden T., Wagner E. F., Schlessinger J., Ullrich A. Anti-oncogenic activity of signalling-defective epidermal growth factor receptor mutants. Mol Cell Biol. 1992 Feb;12(2):491–498. doi: 10.1128/mcb.12.2.491. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Riedel H., Massoglia S., Schlessinger J., Ullrich A. Ligand activation of overexpressed epidermal growth factor receptors transforms NIH 3T3 mouse fibroblasts. Proc Natl Acad Sci U S A. 1988 Mar;85(5):1477–1481. doi: 10.1073/pnas.85.5.1477. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Santoro M., Carlomagno F., Romano A., Bottaro D. P., Dathan N. A., Grieco M., Fusco A., Vecchio G., Matoskova B., Kraus M. H. Activation of RET as a dominant transforming gene by germline mutations of MEN2A and MEN2B. Science. 1995 Jan 20;267(5196):381–383. doi: 10.1126/science.7824936. [DOI] [PubMed] [Google Scholar]
- Schmidt J. A., Beug H., Hayman M. J. Effects of inhibitors of glycoprotein processing on the synthesis and biological activity of the erb B oncogene. EMBO J. 1985 Jan;4(1):105–112. doi: 10.1002/j.1460-2075.1985.tb02323.x. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Scotting P., Vennstrom B., Jansen M., Graf T., Beug H., Hayman M. J. Common site of mutation in the erbB gene of avian erythroblastosis virus mutants that are temperature sensitive for transformation. Oncogene Res. 1987 Aug;1(3):265–278. [PubMed] [Google Scholar]
- Shu H. K., Chang C. M., Ravi L., Ling L., Castellano C. M., Walter E., Pelley R. J., Kung H. J. Modulation of erbB kinase activity and oncogenic potential by single point mutations in the glycine loop of the catalytic domain. Mol Cell Biol. 1994 Oct;14(10):6868–6878. doi: 10.1128/mcb.14.10.6868. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Southern P. J., Berg P. Transformation of mammalian cells to antibiotic resistance with a bacterial gene under control of the SV40 early region promoter. J Mol Appl Genet. 1982;1(4):327–341. [PubMed] [Google Scholar]
- Staros J. V. N-hydroxysulfosuccinimide active esters: bis(N-hydroxysulfosuccinimide) esters of two dicarboxylic acids are hydrophilic, membrane-impermeant, protein cross-linkers. Biochemistry. 1982 Aug 17;21(17):3950–3955. doi: 10.1021/bi00260a008. [DOI] [PubMed] [Google Scholar]
- Stern D. F., Kamps M. P., Cao H. Oncogenic activation of p185neu stimulates tyrosine phosphorylation in vivo. Mol Cell Biol. 1988 Sep;8(9):3969–3973. doi: 10.1128/mcb.8.9.3969. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Travers M. T., Barrett-Lee P. J., Berger U., Luqmani Y. A., Gazet J. C., Powles T. J., Coombes R. C. Growth factor expression in normal, benign, and malignant breast tissue. Br Med J (Clin Res Ed) 1988 Jun 11;296(6637):1621–1624. doi: 10.1136/bmj.296.6637.1621. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Tuzi N. L., Venter D. J., Kumar S., Staddon S. L., Lemoine N. R., Gullick W. J. Expression of growth factor receptors in human brain tumours. Br J Cancer. 1991 Feb;63(2):227–233. doi: 10.1038/bjc.1991.54. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Velu T. J., Beguinot L., Vass W. C., Willingham M. C., Merlino G. T., Pastan I., Lowy D. R. Epidermal-growth-factor-dependent transformation by a human EGF receptor proto-oncogene. Science. 1987 Dec 4;238(4832):1408–1410. doi: 10.1126/science.3500513. [DOI] [PubMed] [Google Scholar]
- Vivien D., Attisano L., Wrana J. L., Massagué J. Signaling activity of homologous and heterologous transforming growth factor-beta receptor kinase complexes. J Biol Chem. 1995 Mar 31;270(13):7134–7141. doi: 10.1074/jbc.270.13.7134. [DOI] [PubMed] [Google Scholar]
- Watowich S. S., Yoshimura A., Longmore G. D., Hilton D. J., Yoshimura Y., Lodish H. F. Homodimerization and constitutive activation of the erythropoietin receptor. Proc Natl Acad Sci U S A. 1992 Mar 15;89(6):2140–2144. doi: 10.1073/pnas.89.6.2140. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Weiner D. B., Liu J., Cohen J. A., Williams W. V., Greene M. I. A point mutation in the neu oncogene mimics ligand induction of receptor aggregation. Nature. 1989 May 18;339(6221):230–231. doi: 10.1038/339230a0. [DOI] [PubMed] [Google Scholar]
- Wong A. J., Ruppert J. M., Bigner S. H., Grzeschik C. H., Humphrey P. A., Bigner D. S., Vogelstein B. Structural alterations of the epidermal growth factor receptor gene in human gliomas. Proc Natl Acad Sci U S A. 1992 Apr 1;89(7):2965–2969. doi: 10.1073/pnas.89.7.2965. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Yarden Y., Schlessinger J. Epidermal growth factor induces rapid, reversible aggregation of the purified epidermal growth factor receptor. Biochemistry. 1987 Mar 10;26(5):1443–1451. doi: 10.1021/bi00379a035. [DOI] [PubMed] [Google Scholar]
- Yoshimura A., Longmore G., Lodish H. F. Point mutation in the exoplasmic domain of the erythropoietin receptor resulting in hormone-independent activation and tumorigenicity. Nature. 1990 Dec 13;348(6302):647–649. doi: 10.1038/348647a0. [DOI] [PubMed] [Google Scholar]
- Zhou M., Felder S., Rubinstein M., Hurwitz D. R., Ullrich A., Lax I., Schlessinger J. Real-time measurements of kinetics of EGF binding to soluble EGF receptor monomers and dimers support the dimerization model for receptor activation. Biochemistry. 1993 Aug 17;32(32):8193–8198. doi: 10.1021/bi00083a020. [DOI] [PubMed] [Google Scholar]