Skip to main content
Journal of Virology logoLink to Journal of Virology
. 1996 Apr;70(4):2658–2663. doi: 10.1128/jvi.70.4.2658-2663.1996

Genetic organization, size, and complete sequence of early region 3 genes of human adenovirus type 41.

H Y Yeh 1, N Pieniazek 1, D Pieniazek 1, R B Luftig 1
PMCID: PMC190119  PMID: 8642703

Abstract

The complete nucleotide and predicted amino acid sequences for open reading frames (ORFs) of the human adenovirus type 41 (Ad41) early region 3 (E3) gene have been determined. The sequence of the Ad41 E3 gene (map units 74 to 83.9) consists of 3,373 nucleotides and has one TATA box and two polyadenylation signals (AATAAA). Analysis of the nucleotide sequence reveals that the E3 gene can encode six ORFs, designated RL1 to RL6. These are all expressed at the mRNA level, as determined by reverse transcription-PCR analysis of AD41-infected cell RNA. When compared with known E3 sequences of most other human adenoviruses deposited in GenBank, the sequences of RL1 to RL3 were found to be unique to subgroup F adenoviruses (Ad40 and Ad41). They encode putative proteins of 173 amino acids (19.4 kDa) and 276 amino acids (31.6 kDa) in one reading frame as well as a 59- amino-acid (6.7 kDa) protein in an overlapping reading frame. RL4 encodes a 90-amino-acid protein (10.1 kDa) with 40% homology to the Ad2 E3 10.4-kDa protein, which induces degradation of the epidermal growth factor receptor and functions together with the Ad2 E3 14.5-kDa protein to protect mouse cell lines against lysis. RL5 encodes a protein of 107 amino acid residues (12.3 kDa) and is analogous to the Ad E3 14.5-kDa protein. RL6 codes for a protein of 122 amino acids (14.7 kDa) that is analogous to the Ad2 14.7-kDa protein, which functions to protect Ad-infected cells from tumor necrosis factor-induced cytolysis. This finding of three unique (RL1 to RL3) E3 gene ORFs may explain why subgroup F adenoviruses differ substantially from other human adenoviruses in their host range; i.e., they replicate predominantly in the host's gastrointestinal rather than respiratory tract. A recent phylogenetic study that compared subgroup F Ad40 DNA sequences with representatives of subgroups B (Ad3), C (Ad2), and E (Ad4) reached a similar conclusion about the uniqueness of RL1 and RL2.

Full Text

The Full Text of this article is available as a PDF (242.1 KB).

Selected References

These references are in PubMed. This may not be the complete list of references from this article.

  1. Albert M. J. Enteric adenoviruses. Brief review. Arch Virol. 1986;88(1-2):1–17. doi: 10.1007/BF01310885. [DOI] [PMC free article] [PubMed] [Google Scholar]
  2. Altschul S. F., Gish W., Miller W., Myers E. W., Lipman D. J. Basic local alignment search tool. J Mol Biol. 1990 Oct 5;215(3):403–410. doi: 10.1016/S0022-2836(05)80360-2. [DOI] [PubMed] [Google Scholar]
  3. Bailey A., Mautner V. Phylogenetic relationships among adenovirus serotypes. Virology. 1994 Dec;205(2):438–452. doi: 10.1006/viro.1994.1664. [DOI] [PubMed] [Google Scholar]
  4. Brandt C. D., Kim H. W., Rodriguez W. J., Arrobio J. O., Jeffries B. C., Stallings E. P., Lewis C., Miles A. J., Gardner M. K., Parrott R. H. Adenoviruses and pediatric gastroenteritis. J Infect Dis. 1985 Mar;151(3):437–443. doi: 10.1093/infdis/151.3.437. [DOI] [PubMed] [Google Scholar]
  5. Brandt C. D., Kim H. W., Yolken R. H., Kapikian A. Z., Arrobio J. O., Rodriguez W. J., Wyatt R. G., Chanock R. M., Parrott R. H. Comparative epidemiology of two rotavirus serotypes and other viral agents associated with pediatric gastroenteritis. Am J Epidemiol. 1979 Sep;110(3):243–254. doi: 10.1093/oxfordjournals.aje.a112809. [DOI] [PubMed] [Google Scholar]
  6. Burgert H. G., Kvist S. An adenovirus type 2 glycoprotein blocks cell surface expression of human histocompatibility class I antigens. Cell. 1985 Jul;41(3):987–997. doi: 10.1016/s0092-8674(85)80079-9. [DOI] [PubMed] [Google Scholar]
  7. Carlin C. R., Tollefson A. E., Brady H. A., Hoffman B. L., Wold W. S. Epidermal growth factor receptor is down-regulated by a 10,400 MW protein encoded by the E3 region of adenovirus. Cell. 1989 Apr 7;57(1):135–144. doi: 10.1016/0092-8674(89)90179-7. [DOI] [PubMed] [Google Scholar]
  8. Cladaras C., Wold W. S. DNA sequence of the early E3 transcription unit of adenovirus 5. Virology. 1985 Jan 15;140(1):28–43. doi: 10.1016/0042-6822(85)90443-x. [DOI] [PubMed] [Google Scholar]
  9. Davison A. J., Telford E. A., Watson M. S., McBride K., Mautner V. The DNA sequence of adenovirus type 40. J Mol Biol. 1993 Dec 20;234(4):1308–1316. doi: 10.1006/jmbi.1993.1687. [DOI] [PubMed] [Google Scholar]
  10. Deininger P. L. Approaches to rapid DNA sequence analysis. Anal Biochem. 1983 Dec;135(2):247–263. doi: 10.1016/0003-2697(83)90680-2. [DOI] [PubMed] [Google Scholar]
  11. Flomenberg P. R., Chen M., Horwitz M. S. Sequence and genetic organization of adenovirus type 35 early region 3. J Virol. 1988 Nov;62(11):4431–4437. doi: 10.1128/jvi.62.11.4431-4437.1988. [DOI] [PMC free article] [PubMed] [Google Scholar]
  12. Friedman D. J., Ricciardi R. P. Adenovirus type 12 E1A gene represses accumulation of MHC class I mRNAs at the level of transcription. Virology. 1988 Jul;165(1):303–305. doi: 10.1016/0042-6822(88)90689-7. [DOI] [PubMed] [Google Scholar]
  13. Gooding L. R., Elmore L. W., Tollefson A. E., Brady H. A., Wold W. S. A 14,700 MW protein from the E3 region of adenovirus inhibits cytolysis by tumor necrosis factor. Cell. 1988 May 6;53(3):341–346. doi: 10.1016/0092-8674(88)90154-7. [DOI] [PubMed] [Google Scholar]
  14. Gooding L. R., Ranheim T. S., Tollefson A. E., Aquino L., Duerksen-Hughes P., Horton T. M., Wold W. S. The 10,400- and 14,500-dalton proteins encoded by region E3 of adenovirus function together to protect many but not all mouse cell lines against lysis by tumor necrosis factor. J Virol. 1991 Aug;65(8):4114–4123. doi: 10.1128/jvi.65.8.4114-4123.1991. [DOI] [PMC free article] [PubMed] [Google Scholar]
  15. Gooding L. R., Sofola I. O., Tollefson A. E., Duerksen-Hughes P., Wold W. S. The adenovirus E3-14.7K protein is a general inhibitor of tumor necrosis factor-mediated cytolysis. J Immunol. 1990 Nov 1;145(9):3080–3086. [PubMed] [Google Scholar]
  16. Hawkins L. K., Wilson-Rawls J., Wold W. S. Region E3 of subgroup B human adenoviruses encodes a 16-kilodalton membrane protein that may be a distant analog of the E3-6.7K protein of subgroup C adenoviruses. J Virol. 1995 Jul;69(7):4292–4298. doi: 10.1128/jvi.69.7.4292-4298.1995. [DOI] [PMC free article] [PubMed] [Google Scholar]
  17. Hierholzer J. C., Wigand R., Anderson L. J., Adrian T., Gold J. W. Adenoviruses from patients with AIDS: a plethora of serotypes and a description of five new serotypes of subgenus D (types 43-47). J Infect Dis. 1988 Oct;158(4):804–813. doi: 10.1093/infdis/158.4.804. [DOI] [PubMed] [Google Scholar]
  18. Hirt B. Selective extraction of polyoma DNA from infected mouse cell cultures. J Mol Biol. 1967 Jun 14;26(2):365–369. doi: 10.1016/0022-2836(67)90307-5. [DOI] [PubMed] [Google Scholar]
  19. Hoffman P., Rajakumar P., Hoffman B., Heuertz R., Wold W. S., Carlin C. R. Evidence for intracellular down-regulation of the epidermal growth factor (EGF) receptor during adenovirus infection by an EGF-independent mechanism. J Virol. 1992 Jan;66(1):197–203. doi: 10.1128/jvi.66.1.197-203.1992. [DOI] [PMC free article] [PubMed] [Google Scholar]
  20. Hoffman P., Yaffe M. B., Hoffman B. L., Yei S., Wold W. S., Carlin C. Characterization of the adenovirus E3 protein that down-regulates the epidermal growth factor receptor. Evidence for intermolecular disulfide bonding and plasma membrane localization. J Biol Chem. 1992 Jul 5;267(19):13480–13487. [PubMed] [Google Scholar]
  21. Hong J. S., Mullis K. G., Engler J. A. Characterization of the early region 3 and fiber genes of Ad7. Virology. 1988 Dec;167(2):545–553. [PubMed] [Google Scholar]
  22. Hopp T. P., Woods K. R. Prediction of protein antigenic determinants from amino acid sequences. Proc Natl Acad Sci U S A. 1981 Jun;78(6):3824–3828. doi: 10.1073/pnas.78.6.3824. [DOI] [PMC free article] [PubMed] [Google Scholar]
  23. Hérissé J., Galibert F. Nucleotide sequence of the EcoRI E fragment of adenovirus 2 genome. Nucleic Acids Res. 1981 Mar 11;9(5):1229–1240. doi: 10.1093/nar/9.5.1229. [DOI] [PMC free article] [PubMed] [Google Scholar]
  24. Kidd A. H., Chroboczek J., Cusack S., Ruigrok R. W. Adenovirus type 40 virions contain two distinct fibers. Virology. 1993 Jan;192(1):73–84. doi: 10.1006/viro.1993.1009. [DOI] [PubMed] [Google Scholar]
  25. Kidd A. H., Erasmus M. J. Sequence characterization of the adenovirus 40 fiber gene. Virology. 1989 Sep;172(1):134–144. doi: 10.1016/0042-6822(89)90115-3. [DOI] [PubMed] [Google Scholar]
  26. Kidd A. H., Erasmus M. J., Tiemessen C. T. Fiber sequence heterogeneity in subgroup F adenoviruses. Virology. 1990 Nov;179(1):139–150. doi: 10.1016/0042-6822(90)90283-w. [DOI] [PubMed] [Google Scholar]
  27. Kämpe O., Bellgrau D., Hammerling U., Lind P., Päbo S., Severinsson L., Peterson P. A. Complex formation of class I transplantation antigens and a viral glycoprotein. J Biol Chem. 1983 Sep 10;258(17):10594–10598. [PubMed] [Google Scholar]
  28. Körner H., Fritzsche U., Burgert H. G. Tumor necrosis factor alpha stimulates expression of adenovirus early region 3 proteins: implications for viral persistence. Proc Natl Acad Sci U S A. 1992 Dec 15;89(24):11857–11861. doi: 10.1073/pnas.89.24.11857. [DOI] [PMC free article] [PubMed] [Google Scholar]
  29. Landschulz W. H., Johnson P. F., McKnight S. L. The leucine zipper: a hypothetical structure common to a new class of DNA binding proteins. Science. 1988 Jun 24;240(4860):1759–1764. doi: 10.1126/science.3289117. [DOI] [PubMed] [Google Scholar]
  30. McKnight S. L. Molecular zippers in gene regulation. Sci Am. 1991 Apr;264(4):54–64. doi: 10.1038/scientificamerican0491-54. [DOI] [PubMed] [Google Scholar]
  31. Mei Y. F., Wadell G. The nucleotide sequence of adenovirus type 11 early 3 region: comparison of genome type Ad11p and Ad11a. Virology. 1992 Nov;191(1):125–133. doi: 10.1016/0042-6822(92)90173-m. [DOI] [PubMed] [Google Scholar]
  32. Pieniazek D., Pieniazek N. J., Macejak D., Coward J., Rayfield M., Luftig R. B. Differential growth of human enteric adenovirus 41 (TAK) in continuous cell lines. Virology. 1990 Jan;174(1):239–249. doi: 10.1016/0042-6822(90)90072-y. [DOI] [PubMed] [Google Scholar]
  33. Pieniazek N. J., Slemenda S. B., Pieniazek D., Velarde J., Jr, Luftig R. B. Human enteric adenovirus type 41 (Tak) contains a second fiber protein gene. Nucleic Acids Res. 1990 Apr 11;18(7):1901–1901. doi: 10.1093/nar/18.7.1901. [DOI] [PMC free article] [PubMed] [Google Scholar]
  34. Pieniazek N. J., Slemenda S. B., Pieniazek D., Velarde J., Jr, Luftig R. B. Sequence of human enteric adenovirus type 41 Tak fiber protein gene. Nucleic Acids Res. 1989 Nov 25;17(22):9474–9474. doi: 10.1093/nar/17.22.9474. [DOI] [PMC free article] [PubMed] [Google Scholar]
  35. Päbo S., Weber F., Kämpe O., Schaffner W., Peterson P. A. Association between transplantation antigens and a viral membrane protein synthesized from a mammalian expression vector. Cell. 1983 Jun;33(2):445–453. doi: 10.1016/0092-8674(83)90426-9. [DOI] [PubMed] [Google Scholar]
  36. Scaria A., Tollefson A. E., Saha S. K., Wold W. S. The E3-11.6K protein of adenovirus is an Asn-glycosylated integral membrane protein that localizes to the nuclear membrane. Virology. 1992 Dec;191(2):743–753. doi: 10.1016/0042-6822(92)90250-s. [DOI] [PubMed] [Google Scholar]
  37. Signäs C., Akusjärvi G., Pettersson U. Region E3 of human adenoviruses; differences between the oncogenic adenovirus-3 and the non-oncogenic adenovirus-2. Gene. 1986;50(1-3):173–184. doi: 10.1016/0378-1119(86)90322-7. [DOI] [PubMed] [Google Scholar]
  38. Sprengel J., Schmitz B., Heuss-Neitzel D., Zock C., Doerfler W. Nucleotide sequence of human adenovirus type 12 DNA: comparative functional analysis. J Virol. 1994 Jan;68(1):379–389. doi: 10.1128/jvi.68.1.379-389.1994. [DOI] [PMC free article] [PubMed] [Google Scholar]
  39. Stewart A. R., Tollefson A. E., Krajcsi P., Yei S. P., Wold W. S. The adenovirus E3 10.4K and 14.5K proteins, which function to prevent cytolysis by tumor necrosis factor and to down-regulate the epidermal growth factor receptor, are localized in the plasma membrane. J Virol. 1995 Jan;69(1):172–181. doi: 10.1128/jvi.69.1.172-181.1995. [DOI] [PMC free article] [PubMed] [Google Scholar]
  40. Tiemessen C. T., Kidd A. H. The subgroup F adenoviruses. J Gen Virol. 1995 Mar;76(Pt 3):481–497. doi: 10.1099/0022-1317-76-3-481. [DOI] [PubMed] [Google Scholar]
  41. Tollefson A. E., Stewart A. R., Yei S. P., Saha S. K., Wold W. S. The 10,400- and 14,500-dalton proteins encoded by region E3 of adenovirus form a complex and function together to down-regulate the epidermal growth factor receptor. J Virol. 1991 Jun;65(6):3095–3105. doi: 10.1128/jvi.65.6.3095-3105.1991. [DOI] [PMC free article] [PubMed] [Google Scholar]
  42. Uhnoo I., Svensson L., Wadell G. Enteric adenoviruses. Baillieres Clin Gastroenterol. 1990 Sep;4(3):627–642. doi: 10.1016/0950-3528(90)90053-j. [DOI] [PubMed] [Google Scholar]
  43. Wigand R., Adrian T., Bricout F. A new human adenovirus of subgenus D: candidate adenovirus type 42. Arch Virol. 1987;94(3-4):283–286. doi: 10.1007/BF01310720. [DOI] [PubMed] [Google Scholar]
  44. Wilson-Rawls J., Deutscher S. L., Wold W. S. The signal-anchor domain of adenovirus E3-6.7K, a type III integral membrane protein, can direct adenovirus E3-gp19K, a type I integral membrane protein, into the membrane of the endoplasmic reticulum. Virology. 1994 May 15;201(1):66–76. doi: 10.1006/viro.1994.1266. [DOI] [PubMed] [Google Scholar]
  45. Wilson-Rawls J., Saha S. K., Krajcsi P., Tollefson A. E., Gooding L. R., Wold W. S. A 6700 MW membrane protein is encoded by region E3 of adenovirus type 2. Virology. 1990 Sep;178(1):204–212. doi: 10.1016/0042-6822(90)90395-8. [DOI] [PubMed] [Google Scholar]
  46. Wilson-Rawls J., Wold W. S. The E3-6.7K protein of adenovirus is an Asn-linked integral membrane glycoprotein localized in the endoplasmic reticulum. Virology. 1993 Jul;195(1):6–15. doi: 10.1006/viro.1993.1341. [DOI] [PubMed] [Google Scholar]
  47. Wold W. S., Gooding L. R. Region E3 of adenovirus: a cassette of genes involved in host immunosurveillance and virus-cell interactions. Virology. 1991 Sep;184(1):1–8. doi: 10.1016/0042-6822(91)90815-s. [DOI] [PubMed] [Google Scholar]
  48. Yeh H. Y., Luftig R. B. Human enteric adenovirus type 41 binding to HEp-2 cells is specific. Virology. 1991 Jul;183(1):410–414. doi: 10.1016/0042-6822(91)90156-6. [DOI] [PubMed] [Google Scholar]
  49. Yeh H. Y., Pieniazek N., Pieniazek D., Gelderblom H., Luftig R. B. Human adenovirus type 41 contains two fibers. Virus Res. 1994 Aug;33(2):179–198. doi: 10.1016/0168-1702(94)90054-x. [DOI] [PubMed] [Google Scholar]
  50. de Jong J. C., Wigand R., Kidd A. H., Wadell G., Kapsenberg J. G., Muzerie C. J., Wermenbol A. G., Firtzlaff R. G. Candidate adenoviruses 40 and 41: fastidious adenoviruses from human infant stool. J Med Virol. 1983;11(3):215–231. doi: 10.1002/jmv.1890110305. [DOI] [PubMed] [Google Scholar]

Articles from Journal of Virology are provided here courtesy of American Society for Microbiology (ASM)

RESOURCES