Abstract
A novel protein which is expressed at high levels in insect cells infected with Amsacta moorei entomopoxvirus was identified by our laboratory. This viral gene product migrates as a 25/27-kDa doublet when subjected to electrophoresis on sodium dodecyl sulfate-polyacrylamide gels. It is expressed at late times of infection and is present in infected cells but is absent in purified extracellular virions and occlusion bodies. The gene encoding this polypeptide was mapped on the viral genome, and cDNA clones were generated and sequenced. The predicted protein was shown to be phosphorylated and contained an unusual 10-unit proline-glutamic acid repeat element. A polyclonal antiserum was produced against a recombinant form of the protein expressed in Escherichia coli, and a monoclonal antibody which reacted with the proline-glutamic acid motif was also identified. Immunofluorescence and immunoelectron microscopy techniques revealed that this protein is associated with large cytoplasmic fibrils which accumulate in the cytoplasm between 96 and 120 h postinfection. We subsequently called this viral polypeptide filament-associated late protein of entomopoxvirus. The fibrils containing this polypeptide are closely associated with occlusion bodies and may play a role in their morphogenesis and maturation.
Full Text
The Full Text of this article is available as a PDF (1.2 MB).
Selected References
These references are in PubMed. This may not be the complete list of references from this article.
- Arif B. M. Recent advances in the molecular biology of entomopoxviruses. J Gen Virol. 1995 Jan;76(Pt 1):1–13. doi: 10.1099/0022-1317-76-1-1. [DOI] [PubMed] [Google Scholar]
- Arif B. M. The entomopoxviruses. Adv Virus Res. 1984;29:195–213. doi: 10.1016/s0065-3527(08)60409-1. [DOI] [PubMed] [Google Scholar]
- Banville M., Dumas F., Trifiro S., Arif B., Richardson C. The predicted amino acid sequence of the spheroidin protein from Amsacta moorei entomopoxvirus: lack of homology between major occlusion body proteins of different poxviruses. J Gen Virol. 1992 Mar;73(Pt 3):559–566. doi: 10.1099/0022-1317-73-3-559. [DOI] [PubMed] [Google Scholar]
- Blasco R., Cole N. B., Moss B. Sequence analysis, expression, and deletion of a vaccinia virus gene encoding a homolog of profilin, a eukaryotic actin-binding protein. J Virol. 1991 Sep;65(9):4598–4608. doi: 10.1128/jvi.65.9.4598-4608.1991. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Charlton C. A., Volkman L. E. Sequential rearrangement and nuclear polymerization of actin in baculovirus-infected Spodoptera frugiperda cells. J Virol. 1991 Mar;65(3):1219–1227. doi: 10.1128/jvi.65.3.1219-1227.1991. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Dall D., Sriskantha A., Vera A., Lai-Fook J., Symonds T. A gene encoding a highly expressed spindle body protein of Heliothis armigera entomopoxvirus. J Gen Virol. 1993 Sep;74(Pt 9):1811–1818. doi: 10.1099/0022-1317-74-9-1811. [DOI] [PubMed] [Google Scholar]
- Gauthier L., Cousserans F., Veyrunes J. C., Bergoin M. The Melolontha melolontha entomopoxvirus (MmEPV) fusolin is related to the fusolins of lepidopteran EPVs and to the 37K baculovirus glycoprotein. Virology. 1995 Apr 20;208(2):427–436. doi: 10.1006/viro.1995.1173. [DOI] [PubMed] [Google Scholar]
- Gingeras T. R., Sciaky D., Gelinas R. E., Bing-Dong J., Yen C. E., Kelly M. M., Bullock P. A., Parsons B. L., O'Neill K. E., Roberts R. J. Nucleotide sequences from the adenovirus-2 genome. J Biol Chem. 1982 Nov 25;257(22):13475–13491. [PubMed] [Google Scholar]
- Granados R. R., Roberts D. W. Electron microscopy of a poxlike virus infecting an invertebrate host. Virology. 1970 Feb;40(2):230–243. doi: 10.1016/0042-6822(70)90398-3. [DOI] [PubMed] [Google Scholar]
- Gruidl M. E., Hall R. L., Moyer R. W. Mapping and molecular characterization of a functional thymidine kinase from Amsacta moorei entomopoxvirus. Virology. 1992 Feb;186(2):507–516. doi: 10.1016/0042-6822(92)90016-i. [DOI] [PubMed] [Google Scholar]
- Hall R. L., Hink W. F. Physical mapping and field inversion gel electrophoresis of Amsacta moorei entomopoxvirus DNA. Arch Virol. 1990;110(1-2):77–90. doi: 10.1007/BF01310704. [DOI] [PubMed] [Google Scholar]
- Hall R. L., Moyer R. W. Identification, cloning, and sequencing of a fragment of Amsacta moorei entomopoxvirus DNA containing the spheroidin gene and three vaccinia virus-related open reading frames. J Virol. 1991 Dec;65(12):6516–6527. doi: 10.1128/jvi.65.12.6516-6527.1991. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Hiller G., Jungwirth C., Weber K. Fluorescence microscopical analysis of the life cycle of vaccinia virus in chick embryo fibroblasts. Virus-cytoskeleton interactions. Exp Cell Res. 1981 Mar;132(1):81–87. doi: 10.1016/0014-4827(81)90085-9. [DOI] [PubMed] [Google Scholar]
- Hukuhara T., Xu J. H., Yano K. Replication of an entomopoxvirus in two lepidopteran cell lines. J Invertebr Pathol. 1990 Sep;56(2):222–232. doi: 10.1016/0022-2011(90)90104-e. [DOI] [PubMed] [Google Scholar]
- Kool M., Broer R., Zuidema D., Goldbach R. W., Vlak J. M. Nucleotide sequence and genetic organization of a 7.3 kb region (map unit 47 to 52.5) of Autographa californica nuclear polyhedrosis virus fragment EcoRI-C. J Gen Virol. 1994 Mar;75(Pt 3):487–494. doi: 10.1099/0022-1317-75-3-487. [DOI] [PubMed] [Google Scholar]
- Lin K. H., Cheng S. Y. An efficient method to purify active eukaryotic proteins from the inclusion bodies in Escherichia coli. Biotechniques. 1991 Dec;11(6):748, 750, 752-3. [PubMed] [Google Scholar]
- Luftig R. B. Does the cytoskeleton play a significant role in animal virus replication? J Theor Biol. 1982 Nov 7;99(1):173–191. doi: 10.1016/0022-5193(82)90397-6. [DOI] [PubMed] [Google Scholar]
- Lytvyn V., Fortin Y., Banville M., Arif B., Richardson C. Comparison of the thymidine kinase genes from three entomopoxviruses. J Gen Virol. 1992 Dec;73(Pt 12):3235–3240. doi: 10.1099/0022-1317-73-12-3235. [DOI] [PubMed] [Google Scholar]
- Marlow S. A., Billam L. J., Palmer C. P., King L. A. Replication and morphogenesis of Amsacta moorei entomopoxvirus in cultured cells of Estigmene acrea (salt marsh caterpillar). J Gen Virol. 1993 Jul;74(Pt 7):1457–1461. doi: 10.1099/0022-1317-74-7-1457. [DOI] [PubMed] [Google Scholar]
- Matsudaira P. Sequence from picomole quantities of proteins electroblotted onto polyvinylidene difluoride membranes. J Biol Chem. 1987 Jul 25;262(21):10035–10038. [PubMed] [Google Scholar]
- Moss B., Ahn B. Y., Amegadzie B., Gershon P. D., Keck J. G. Cytoplasmic transcription system encoded by vaccinia virus. J Biol Chem. 1991 Jan 25;266(3):1355–1358. [PubMed] [Google Scholar]
- Nilsson B., Abrahmsén L., Uhlén M. Immobilization and purification of enzymes with staphylococcal protein A gene fusion vectors. EMBO J. 1985 Apr;4(4):1075–1080. doi: 10.1002/j.1460-2075.1985.tb03741.x. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Nilsson B., Forsberg G., Hartmanis M. Expression and purification of recombinant insulin-like growth factors from Escherichia coli. Methods Enzymol. 1991;198:3–16. doi: 10.1016/0076-6879(91)98003-o. [DOI] [PubMed] [Google Scholar]
- Palmer C. P., Miller D. P., Marlow S. A., Wilson L. E., Lawrie A. M., King L. A. Genetic modification of an entomopoxvirus: deletion of the spheroidin gene does not affect virus replication in vitro. J Gen Virol. 1995 Jan;76(Pt 1):15–23. doi: 10.1099/0022-1317-76-1-15. [DOI] [PubMed] [Google Scholar]
- Patel D. D., Pickup D. J. Messenger RNAs of a strongly-expressed late gene of cowpox virus contain 5'-terminal poly(A) sequences. EMBO J. 1987 Dec 1;6(12):3787–3794. doi: 10.1002/j.1460-2075.1987.tb02714.x. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Postle K., Good R. F. DNA sequence of the Escherichia coli tonB gene. Proc Natl Acad Sci U S A. 1983 Sep;80(17):5235–5239. doi: 10.1073/pnas.80.17.5235. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Rice S. A., Long M. C., Lam V., Spencer C. A. RNA polymerase II is aberrantly phosphorylated and localized to viral replication compartments following herpes simplex virus infection. J Virol. 1994 Feb;68(2):988–1001. doi: 10.1128/jvi.68.2.988-1001.1994. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Richardson J. P., Beecroft R. P., Tolson D. L., Liu M. K., Pearson T. W. Procyclin: an unusual immunodominant glycoprotein surface antigen from the procyclic stage of African trypanosomes. Mol Biochem Parasitol. 1988 Dec;31(3):203–216. doi: 10.1016/0166-6851(88)90150-8. [DOI] [PubMed] [Google Scholar]
- Roberts S., Ashmole I., Gibson L. J., Rookes S. M., Barton G. J., Gallimore P. H. Mutational analysis of human papillomavirus E4 proteins: identification of structural features important in the formation of cytoplasmic E4/cytokeratin networks in epithelial cells. J Virol. 1994 Oct;68(10):6432–6445. doi: 10.1128/jvi.68.10.6432-6445.1994. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Stokes G. V. High-voltage electron microscope study of the release of vaccinia virus from whole cells. J Virol. 1976 May;18(2):636–643. doi: 10.1128/jvi.18.2.636-643.1976. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Traub I., Gaisser S., Braun V. Activity domains of the TonB protein. Mol Microbiol. 1993 Apr;8(2):409–423. doi: 10.1111/j.1365-2958.1993.tb01584.x. [DOI] [PubMed] [Google Scholar]
- Van Oers M. M., Flipsen J. T., Reusken C. B., Vlak J. M. Specificity of baculovirus p10 functions. Virology. 1994 May 1;200(2):513–523. doi: 10.1006/viro.1994.1214. [DOI] [PubMed] [Google Scholar]
- Vialard J. E., Richardson C. D. The 1,629-nucleotide open reading frame located downstream of the Autographa californica nuclear polyhedrosis virus polyhedrin gene encodes a nucleocapsid-associated phosphoprotein. J Virol. 1993 Oct;67(10):5859–5866. doi: 10.1128/jvi.67.10.5859-5866.1993. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Vlak J. M., Klinkenberg F. A., Zaal K. J., Usmany M., Klinge-Roode E. C., Geervliet J. B., Roosien J., van Lent J. W. Functional studies on the p10 gene of Autographa californica nuclear polyhedrosis virus using a recombinant expressing a p10-beta-galactosidase fusion gene. J Gen Virol. 1988 Apr;69(Pt 4):765–776. doi: 10.1099/0022-1317-69-4-765. [DOI] [PubMed] [Google Scholar]
- Weyer U., Knight S., Possee R. D. Analysis of very late gene expression by Autographa californica nuclear polyhedrosis virus and the further development of multiple expression vectors. J Gen Virol. 1990 Jul;71(Pt 7):1525–1534. doi: 10.1099/0022-1317-71-7-1525. [DOI] [PubMed] [Google Scholar]
- Williams G. V., Rohel D. Z., Kuzio J., Faulkner P. A cytopathological investigation of Autographa californica nuclear polyhedrosis virus p10 gene function using insertion/deletion mutants. J Gen Virol. 1989 Jan;70(Pt 1):187–202. doi: 10.1099/0022-1317-70-1-187. [DOI] [PubMed] [Google Scholar]
- Williamson M. P. The structure and function of proline-rich regions in proteins. Biochem J. 1994 Jan 15;297(Pt 2):249–260. doi: 10.1042/bj2970249. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Zorzato F., Fujii J., Otsu K., Phillips M., Green N. M., Lai F. A., Meissner G., MacLennan D. H. Molecular cloning of cDNA encoding human and rabbit forms of the Ca2+ release channel (ryanodine receptor) of skeletal muscle sarcoplasmic reticulum. J Biol Chem. 1990 Feb 5;265(4):2244–2256. [PubMed] [Google Scholar]
- van Oers M. M., Flipsen J. T., Reusken C. B., Sliwinsky E. L., Goldbach R. W., Vlak J. M. Functional domains of the p10 protein of Autographa californica nuclear polyhedrosis virus. J Gen Virol. 1993 Apr;74(Pt 4):563–574. doi: 10.1099/0022-1317-74-4-563. [DOI] [PubMed] [Google Scholar]
- van Ormondt H., Maat J., van Beveren C. P. The nucleotide sequence of the transforming early region E1 of adenovirus type 5 DNA. Gene. 1980 Nov;11(3-4):299–309. doi: 10.1016/0378-1119(80)90070-0. [DOI] [PubMed] [Google Scholar]