Abstract
Avian reovirus S1133 specifies at least 10 primary translation products, eight of which are present in the viral particle and two of which are nonstructural proteins. In the work presented here, we studied the covalent modifications undergone by these translation products in the infected cell. The structural polypeptide mu2 was shown to be intracellularly modified by both myristoylation and proteolysis. The site-specific cleavage of mu2 yielded a large carboxy-terminal fragment and a myristoylated approximately 5,500-Mr peptide corresponding to the amino terminus. Both mu2 and its cleavage products were found to be structural components of the reovirion. Most avian reovirus proteins were found to be glycosylated and to have a blocking group at the amino terminus. In contrast to the mammalian reovirus system, none of the avian reovirus polypeptides was found to incorporate phosphorus during infection. Our results add to current understanding of the similarities and differences between avian and mammalian reoviruses.
Full Text
The Full Text of this article is available as a PDF (583.0 KB).
Selected References
These references are in PubMed. This may not be the complete list of references from this article.
- Benavente J., Shatkin A. J. Avian reovirus mRNAs are nonfunctional in infected mouse cells: translational basis for virus host-range restriction. Proc Natl Acad Sci U S A. 1988 Jun;85(12):4257–4261. doi: 10.1073/pnas.85.12.4257. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Benko D. M., Haltiwanger R. S., Hart G. W., Gibson W. Virion basic phosphoprotein from human cytomegalovirus contains O-linked N-acetylglucosamine. Proc Natl Acad Sci U S A. 1988 Apr;85(8):2573–2577. doi: 10.1073/pnas.85.8.2573. [DOI] [PMC free article] [PubMed] [Google Scholar]
- CRAVEN G. R., STEERS E., Jr, ANFINSEN C. B. PURIFICATION, COMPOSITION, AND MOLECULAR WEIGHT OF THE BETA-GALACTOSIDASE OF ESCHERICHIA COLI K12. J Biol Chem. 1965 Jun;240:2468–2477. [PubMed] [Google Scholar]
- Carter C. A., Lin B. Y., Metlay M. Polyadenylylation of reovirus proteins. Analysis of the RNA bound to structural proteins. J Biol Chem. 1980 Jul 10;255(13):6479–6485. [PubMed] [Google Scholar]
- Carter C. A. Polyadenylylation of proteins in reovirions. Proc Natl Acad Sci U S A. 1979 Jul;76(7):3087–3091. doi: 10.1073/pnas.76.7.3087. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Chamberlain J. P. Fluorographic detection of radioactivity in polyacrylamide gels with the water-soluble fluor, sodium salicylate. Anal Biochem. 1979 Sep 15;98(1):132–135. doi: 10.1016/0003-2697(79)90716-4. [DOI] [PubMed] [Google Scholar]
- Cohen P. The role of protein phosphorylation in neural and hormonal control of cellular activity. Nature. 1982 Apr 15;296(5858):613–620. doi: 10.1038/296613a0. [DOI] [PubMed] [Google Scholar]
- Dubray G., Bezard G. A highly sensitive periodic acid-silver stain for 1,2-diol groups of glycoproteins and polysaccharides in polyacrylamide gels. Anal Biochem. 1982 Jan 15;119(2):325–329. doi: 10.1016/0003-2697(82)90593-0. [DOI] [PubMed] [Google Scholar]
- Estes M. K., Cohen J. Rotavirus gene structure and function. Microbiol Rev. 1989 Dec;53(4):410–449. doi: 10.1128/mr.53.4.410-449.1989. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Glass S. E., Naqi S. A., Hall C. F., Kerr K. M. Isolation and characterization of a virus associated with arthritis of chickens. Avian Dis. 1973 Apr-Jun;17(2):415–424. [PubMed] [Google Scholar]
- Hart G. W., Haltiwanger R. S., Holt G. D., Kelly W. G. Glycosylation in the nucleus and cytoplasm. Annu Rev Biochem. 1989;58:841–874. doi: 10.1146/annurev.bi.58.070189.004205. [DOI] [PubMed] [Google Scholar]
- Krebs E. G. The growth of research on protein phosphorylation. Trends Biochem Sci. 1994 Nov;19(11):439–439. doi: 10.1016/0968-0004(94)90125-2. [DOI] [PubMed] [Google Scholar]
- Krystal G., Perrault J., Graham A. F. Evidence for a glycoprotein in reovirus. Virology. 1976 Jul 15;72(2):308–321. doi: 10.1016/0042-6822(76)90160-4. [DOI] [PubMed] [Google Scholar]
- Krystal G., Winn P., Millward S., Sakuma S. Evidence for phosphoproteins in reovirus. Virology. 1975 Apr;64(2):505–512. doi: 10.1016/0042-6822(75)90127-0. [DOI] [PubMed] [Google Scholar]
- Laemmli U. K. Cleavage of structural proteins during the assembly of the head of bacteriophage T4. Nature. 1970 Aug 15;227(5259):680–685. doi: 10.1038/227680a0. [DOI] [PubMed] [Google Scholar]
- Lerner A. M., Bailey E. J., Tillotson J. R. Enterovirus hemagglutination: inhibition by several enzymes and sugars. J Immunol. 1965 Dec;95(6):1111–1115. [PubMed] [Google Scholar]
- Lerner A. M., Gelb L. D., Tillotson J. R., Carruthers M. M., Bailey E. J. Enterovirus hemagglutination: inhibition by aldoses and a possible mechanism. J Immunol. 1966 Apr;96(4):629–636. [PubMed] [Google Scholar]
- Liu N., Brown D. T. Phosphorylation and dephosphorylation events play critical roles in Sindbis virus maturation. Virology. 1993 Oct;196(2):703–711. doi: 10.1006/viro.1993.1527. [DOI] [PubMed] [Google Scholar]
- Martinez-Costas J., Varela R., Benavente J. Endogenous enzymatic activities of the avian reovirus S1133: identification of the viral capping enzyme. Virology. 1995 Feb 1;206(2):1017–1026. doi: 10.1006/viro.1995.1024. [DOI] [PubMed] [Google Scholar]
- Masters P. S., Banerjee A. K. Phosphoprotein NS of vesicular stomatitis virus: phosphorylated states and transcriptional activities of intracellular and virion forms. Virology. 1986 Oct 30;154(2):259–270. doi: 10.1016/0042-6822(86)90452-6. [DOI] [PubMed] [Google Scholar]
- McCauley J. W., Mahy B. W. Structure and function of the influenza virus genome. Biochem J. 1983 May 1;211(2):281–294. doi: 10.1042/bj2110281. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Moussatche N., Keller S. J. Phosphorylation of vaccinia virus core proteins during transcription in vitro. J Virol. 1991 May;65(5):2555–2561. doi: 10.1128/jvi.65.5.2555-2561.1991. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Mullis K. G., Haltiwanger R. S., Hart G. W., Marchase R. B., Engler J. A. Relative accessibility of N-acetylglucosamine in trimers of the adenovirus types 2 and 5 fiber proteins. J Virol. 1990 Nov;64(11):5317–5323. doi: 10.1128/jvi.64.11.5317-5323.1990. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Ni Y., Ramig R. F. Characterization of avian reovirus-induced cell fusion: the role of viral structural proteins. Virology. 1993 Jun;194(2):705–714. doi: 10.1006/viro.1993.1311. [DOI] [PubMed] [Google Scholar]
- Ni Y., Ramig R. F., Kemp M. C. Identification of proteins encoded by avian reoviruses and evidence for post-translational modification. Virology. 1993 Mar;193(1):466–469. doi: 10.1006/viro.1993.1147. [DOI] [PubMed] [Google Scholar]
- Nibert M. L., Fields B. N. A carboxy-terminal fragment of protein mu 1/mu 1C is present in infectious subvirion particles of mammalian reoviruses and is proposed to have a role in penetration. J Virol. 1992 Nov;66(11):6408–6418. doi: 10.1128/jvi.66.11.6408-6418.1992. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Nibert M. L., Schiff L. A., Fields B. N. Mammalian reoviruses contain a myristoylated structural protein. J Virol. 1991 Apr;65(4):1960–1967. doi: 10.1128/jvi.65.4.1960-1967.1991. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Oakley B. R., Kirsch D. R., Morris N. R. A simplified ultrasensitive silver stain for detecting proteins in polyacrylamide gels. Anal Biochem. 1980 Jul 1;105(2):361–363. doi: 10.1016/0003-2697(80)90470-4. [DOI] [PubMed] [Google Scholar]
- Pett D. M., Vanaman T. C., Joklik W. K. Studies on the amino and carboxyl terminal amino acid sequences of reovirus capsid polypeptides. Virology. 1973 Mar;52(1):174–186. doi: 10.1016/0042-6822(73)90407-8. [DOI] [PubMed] [Google Scholar]
- Privalsky M. L. A subpopulation of the avian erythroblastosis virus v-erbA protein, a member of the nuclear hormone receptor family, is glycosylated. J Virol. 1990 Jan;64(1):463–466. doi: 10.1128/jvi.64.1.463-466.1990. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Pugh J., Zweidler A., Summers J. Characterization of the major duck hepatitis B virus core particle protein. J Virol. 1989 Mar;63(3):1371–1376. doi: 10.1128/jvi.63.3.1371-1376.1989. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Ransone L. J., Dasgupta A. Multiple isoelectric forms of poliovirus RNA-dependent RNA polymerase: evidence for phosphorylation. J Virol. 1989 Nov;63(11):4563–4568. doi: 10.1128/jvi.63.11.4563-4568.1989. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Rosenfeld J., Capdevielle J., Guillemot J. C., Ferrara P. In-gel digestion of proteins for internal sequence analysis after one- or two-dimensional gel electrophoresis. Anal Biochem. 1992 May 15;203(1):173–179. doi: 10.1016/0003-2697(92)90061-b. [DOI] [PubMed] [Google Scholar]
- Schägger H., von Jagow G. Tricine-sodium dodecyl sulfate-polyacrylamide gel electrophoresis for the separation of proteins in the range from 1 to 100 kDa. Anal Biochem. 1987 Nov 1;166(2):368–379. doi: 10.1016/0003-2697(87)90587-2. [DOI] [PubMed] [Google Scholar]
- Silberstein H., August J. T. Phosphorylation of animal virus proteins by a virion protein kinase. J Virol. 1973 Sep;12(3):511–522. doi: 10.1128/jvi.12.3.511-522.1973. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Spandidos D. A., Graham A. F. Physical and chemical characterization of an avian reovirus. J Virol. 1976 Sep;19(3):968–976. doi: 10.1128/jvi.19.3.968-976.1976. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Steck G., Leuthard P., Bürk R. R. Detection of basic proteins and low molecular weight peptides in polyacrylamide gels by formaldehyde fixation. Anal Biochem. 1980 Sep 1;107(1):21–24. doi: 10.1016/0003-2697(80)90486-8. [DOI] [PubMed] [Google Scholar]
- Tillotson J. R., Lerner A. M. Effect of periodate oxidation on hemagglutinating and antibody-producing capacities of certain enteroviruses and reoviruses. Proc Natl Acad Sci U S A. 1966 Oct;56(4):1143–1150. doi: 10.1073/pnas.56.4.1143. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Tillotson L., Shatkin A. J. Reovirus polypeptide sigma 3 and N-terminal myristoylation of polypeptide mu 1 are required for site-specific cleavage to mu 1C in transfected cells. J Virol. 1992 Apr;66(4):2180–2186. doi: 10.1128/jvi.66.4.2180-2186.1992. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Towler D. A., Gordon J. I., Adams S. P., Glaser L. The biology and enzymology of eukaryotic protein acylation. Annu Rev Biochem. 1988;57:69–99. doi: 10.1146/annurev.bi.57.070188.000441. [DOI] [PubMed] [Google Scholar]
- Van der Heide L., Geissler J., Bryant E. S. Infectious tenosynovitis: serologic and histopathologic response after experimental infection with a Connecticut isolate. Avian Dis. 1974 Jul;18(3):289–296. [PubMed] [Google Scholar]
- Varela R., Benavente J. Protein coding assignment of avian reovirus strain S1133. J Virol. 1994 Oct;68(10):6775–6777. doi: 10.1128/jvi.68.10.6775-6777.1994. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Varki A. Metabolic radiolabeling of glycoconjugates. Methods Enzymol. 1994;230:16–32. doi: 10.1016/0076-6879(94)30004-6. [DOI] [PubMed] [Google Scholar]
- Wade-Evans A. M., Mertens P. P., Belsham G. J. Sequence of genome segment 9 of bluetongue virus (serotype 1, South Africa) and expression analysis demonstrating that different forms of VP6 are derived from initiation of protein synthesis at two distinct sites. J Gen Virol. 1992 Nov;73(Pt 11):3023–3026. doi: 10.1099/0022-1317-73-11-3023. [DOI] [PubMed] [Google Scholar]
- Wiener J. R., Joklik W. K. Evolution of reovirus genes: a comparison of serotype 1, 2, and 3 M2 genome segments, which encode the major structural capsid protein mu 1C. Virology. 1988 Apr;163(2):603–613. doi: 10.1016/0042-6822(88)90301-7. [DOI] [PubMed] [Google Scholar]