Skip to main content
Journal of Virology logoLink to Journal of Virology
. 1996 May;70(5):3060–3067. doi: 10.1128/jvi.70.5.3060-3067.1996

Tyrosine kinase-dependent release of an adenovirus preterminal protein complex from the nuclear matrix.

P C Angeletti 1, J A Engler 1
PMCID: PMC190167  PMID: 8627784

Abstract

Adenovirus (Ad) replicative complexes form at discrete sites on the nuclear matrix (NM) through the interaction of Ad preterminal protein (pTP). The NM is a highly salt-resistant fibrillar network which is known to anchor transcription, mRNA splicing, and DNA replication complexes. Incubation of rATP with NM to which pTP was bound caused the release of pTP as a pTP-NM complex with a size of 220 to 230 kDa; incubation with 5' adenylylimidodiphosphate (rAMP-PNP) showed no significant release, indicating that rATP hydrolysis was required. With NM extracts, it was shown that a pTP-NM complex which was capable of binding Ad origin DNA could be reconstituted in vitro. A number of high-molecular-weight NM proteins ranging in size from 120 to 200 kDa were identified on Far Western blots for their ability to bind pTP. rATP-dependent release of pTP from the NM was inhibited in a dose-dependent fashion by the addition of tyrosine kinase inhibitors, such as quercetin, methyl-2,5-dihydroxycinnamate, or genistein. NM-mediated phosphorylation of a poly(Glu, Tyr) substrate was also significantly abrogated by the addition of these compounds. rATP-dependent release of Ad DNA termini bound to the NM via pTP was also blocked by the addition of these inhibitors. These results indicate that a tyrosine kinase mechanism controls the release of pTP from its binding sites on the NM. These data support the concept that phosphorylation may play a key role in the modulation of pTP binding sites on the NM.

Full Text

The Full Text of this article is available as a PDF (336.7 KB).

Selected References

These references are in PubMed. This may not be the complete list of references from this article.

  1. Berezney R., Coffey D. S. Identification of a nuclear protein matrix. Biochem Biophys Res Commun. 1974 Oct 23;60(4):1410–1417. doi: 10.1016/0006-291x(74)90355-6. [DOI] [PubMed] [Google Scholar]
  2. Berezney R., Coffey D. S. Nuclear matrix. Isolation and characterization of a framework structure from rat liver nuclei. J Cell Biol. 1977 Jun;73(3):616–637. doi: 10.1083/jcb.73.3.616. [DOI] [PMC free article] [PubMed] [Google Scholar]
  3. Berezney R. The nuclear matrix: a heuristic model for investigating genomic organization and function in the cell nucleus. J Cell Biochem. 1991 Oct;47(2):109–123. doi: 10.1002/jcb.240470204. [DOI] [PubMed] [Google Scholar]
  4. Bidwell J. P., Van Wijnen A. J., Fey E. G., Dworetzky S., Penman S., Stein J. L., Lian J. B., Stein G. S. Osteocalcin gene promoter-binding factors are tissue-specific nuclear matrix components. Proc Natl Acad Sci U S A. 1993 Apr 15;90(8):3162–3166. doi: 10.1073/pnas.90.8.3162. [DOI] [PMC free article] [PubMed] [Google Scholar]
  5. Blencowe B. J., Nickerson J. A., Issner R., Penman S., Sharp P. A. Association of nuclear matrix antigens with exon-containing splicing complexes. J Cell Biol. 1994 Nov;127(3):593–607. doi: 10.1083/jcb.127.3.593. [DOI] [PMC free article] [PubMed] [Google Scholar]
  6. Bodnar J. W., Hanson P. I., Polvino-Bodnar M., Zempsky W., Ward D. C. The terminal regions of adenovirus and minute virus of mice DNAs are preferentially associated with the nuclear matrix in infected cells. J Virol. 1989 Oct;63(10):4344–4353. doi: 10.1128/jvi.63.10.4344-4353.1989. [DOI] [PMC free article] [PubMed] [Google Scholar]
  7. Bosher J., Dawson A., Hay R. T. Nuclear factor I is specifically targeted to discrete subnuclear sites in adenovirus type 2-infected cells. J Virol. 1992 May;66(5):3140–3150. doi: 10.1128/jvi.66.5.3140-3150.1992. [DOI] [PMC free article] [PubMed] [Google Scholar]
  8. Boulikas T. Nature of DNA sequences at the attachment regions of genes to the nuclear matrix. J Cell Biochem. 1993 May;52(1):14–22. doi: 10.1002/jcb.240520104. [DOI] [PubMed] [Google Scholar]
  9. Bradford M. M. A rapid and sensitive method for the quantitation of microgram quantities of protein utilizing the principle of protein-dye binding. Anal Biochem. 1976 May 7;72:248–254. doi: 10.1016/0003-2697(76)90527-3. [DOI] [PubMed] [Google Scholar]
  10. Bridge E., Xia D. X., Carmo-Fonseca M., Cardinali B., Lamond A. I., Pettersson U. Dynamic organization of splicing factors in adenovirus-infected cells. J Virol. 1995 Jan;69(1):281–290. doi: 10.1128/jvi.69.1.281-290.1995. [DOI] [PMC free article] [PubMed] [Google Scholar]
  11. Carrière C., Gay B., Chazal N., Morin N., Boulanger P. Sequence requirements for encapsidation of deletion mutants and chimeras of human immunodeficiency virus type 1 Gag precursor into retrovirus-like particles. J Virol. 1995 Apr;69(4):2366–2377. doi: 10.1128/jvi.69.4.2366-2377.1995. [DOI] [PMC free article] [PubMed] [Google Scholar]
  12. Challberg M. D., Kelly T. J. Animal virus DNA replication. Annu Rev Biochem. 1989;58:671–717. doi: 10.1146/annurev.bi.58.070189.003323. [DOI] [PubMed] [Google Scholar]
  13. Challberg M. D., Kelly T. J., Jr Adenovirus DNA replication in vitro. Proc Natl Acad Sci U S A. 1979 Feb;76(2):655–659. doi: 10.1073/pnas.76.2.655. [DOI] [PMC free article] [PubMed] [Google Scholar]
  14. Chen M., Mermod N., Horwitz M. S. Protein-protein interactions between adenovirus DNA polymerase and nuclear factor I mediate formation of the DNA replication preinitiation complex. J Biol Chem. 1990 Oct 25;265(30):18634–18642. [PubMed] [Google Scholar]
  15. Chen W. T., Chen J. M., Mueller S. C. Coupled expression and colocalization of 140K cell adhesion molecules, fibronectin, and laminin during morphogenesis and cytodifferentiation of chick lung cells. J Cell Biol. 1986 Sep;103(3):1073–1090. doi: 10.1083/jcb.103.3.1073. [DOI] [PMC free article] [PubMed] [Google Scholar]
  16. Dessev G., Goldman R. Meiotic breakdown of nuclear envelope in oocytes of Spisula solidissima involves phosphorylation and release of nuclear lamin. Dev Biol. 1988 Dec;130(2):543–550. doi: 10.1016/0012-1606(88)90349-1. [DOI] [PubMed] [Google Scholar]
  17. Dessev G., Iovcheva C., Tasheva B., Goldman R. Protein kinase activity associated with the nuclear lamina. Proc Natl Acad Sci U S A. 1988 May;85(9):2994–2998. doi: 10.1073/pnas.85.9.2994. [DOI] [PMC free article] [PubMed] [Google Scholar]
  18. Durfee T., Mancini M. A., Jones D., Elledge S. J., Lee W. H. The amino-terminal region of the retinoblastoma gene product binds a novel nuclear matrix protein that co-localizes to centers for RNA processing. J Cell Biol. 1994 Nov;127(3):609–622. doi: 10.1083/jcb.127.3.609. [DOI] [PMC free article] [PubMed] [Google Scholar]
  19. Feuerstein N., Chan P. K., Mond J. J. Identification of numatrin, the nuclear matrix protein associated with induction of mitogenesis, as the nucleolar protein B23. Implication for the role of the nucleolus in early transduction of mitogenic signals. J Biol Chem. 1988 Aug 5;263(22):10608–10612. [PubMed] [Google Scholar]
  20. Fey E. G., Penman S. Nuclear matrix proteins reflect cell type of origin in cultured human cells. Proc Natl Acad Sci U S A. 1988 Jan;85(1):121–125. doi: 10.1073/pnas.85.1.121. [DOI] [PMC free article] [PubMed] [Google Scholar]
  21. Fisher P. A. Disassembly and reassembly of nuclei in cell-free systems. Cell. 1987 Jan 30;48(2):175–176. doi: 10.1016/0092-8674(87)90417-x. [DOI] [PubMed] [Google Scholar]
  22. Foisner R., Gerace L. Integral membrane proteins of the nuclear envelope interact with lamins and chromosomes, and binding is modulated by mitotic phosphorylation. Cell. 1993 Jul 2;73(7):1267–1279. doi: 10.1016/0092-8674(93)90355-t. [DOI] [PubMed] [Google Scholar]
  23. Fredman J. N., Engler J. A. Adenovirus precursor to terminal protein interacts with the nuclear matrix in vivo and in vitro. J Virol. 1993 Jun;67(6):3384–3395. doi: 10.1128/jvi.67.6.3384-3395.1993. [DOI] [PMC free article] [PubMed] [Google Scholar]
  24. Fredman J. N., Pettit S. C., Horwitz M. S., Engler J. A. Linker insertion mutations in the adenovirus preterminal protein that affect DNA replication activity in vivo and in vitro. J Virol. 1991 Sep;65(9):4591–4597. doi: 10.1128/jvi.65.9.4591-4597.1991. [DOI] [PMC free article] [PubMed] [Google Scholar]
  25. Fuerst T. R., Niles E. G., Studier F. W., Moss B. Eukaryotic transient-expression system based on recombinant vaccinia virus that synthesizes bacteriophage T7 RNA polymerase. Proc Natl Acad Sci U S A. 1986 Nov;83(21):8122–8126. doi: 10.1073/pnas.83.21.8122. [DOI] [PMC free article] [PubMed] [Google Scholar]
  26. Georgatos S. D., Stournaras C., Blobel G. Heterotypic and homotypic associations between the nuclear lamins: site-specificity and control by phosphorylation. Proc Natl Acad Sci U S A. 1988 Jun;85(12):4325–4329. doi: 10.1073/pnas.85.12.4325. [DOI] [PMC free article] [PubMed] [Google Scholar]
  27. Getzenberg R. H., Pienta K. J., Ward W. S., Coffey D. S. Nuclear structure and the three-dimensional organization of DNA. J Cell Biochem. 1991 Dec;47(4):289–299. doi: 10.1002/jcb.240470402. [DOI] [PubMed] [Google Scholar]
  28. Hozák P., Hassan A. B., Jackson D. A., Cook P. R. Visualization of replication factories attached to nucleoskeleton. Cell. 1993 Apr 23;73(2):361–373. doi: 10.1016/0092-8674(93)90235-i. [DOI] [PubMed] [Google Scholar]
  29. Joung I., Engler J. A. Mutations in two cysteine-histidine-rich clusters in adenovirus type 2 DNA polymerase affect DNA binding. J Virol. 1992 Oct;66(10):5788–5796. doi: 10.1128/jvi.66.10.5788-5796.1992. [DOI] [PMC free article] [PubMed] [Google Scholar]
  30. Kusukawa J., Ramachandra M., Nakano R., Padmanabhan R. Phosphorylation-dependent interaction of adenovirus preterminal protein with the viral origin of DNA replication. J Biol Chem. 1994 Jan 21;269(3):2189–2196. [PubMed] [Google Scholar]
  31. Laemmli U. K. Cleavage of structural proteins during the assembly of the head of bacteriophage T4. Nature. 1970 Aug 15;227(5259):680–685. doi: 10.1038/227680a0. [DOI] [PubMed] [Google Scholar]
  32. Lucher L. A., Khuntirat B., Zhao J., Angeletti P. C. Altered expression of adenovirus 12 DNA-binding protein but not DNA polymerase during abortive infection of hamster cells. Virology. 1992 Jul;189(1):187–195. doi: 10.1016/0042-6822(92)90694-k. [DOI] [PubMed] [Google Scholar]
  33. Mancini M. A., Shan B., Nickerson J. A., Penman S., Lee W. H. The retinoblastoma gene product is a cell cycle-dependent, nuclear matrix-associated protein. Proc Natl Acad Sci U S A. 1994 Jan 4;91(1):418–422. doi: 10.1073/pnas.91.1.418. [DOI] [PMC free article] [PubMed] [Google Scholar]
  34. McKeon F. Nuclear lamin proteins: domains required for nuclear targeting, assembly, and cell-cycle-regulated dynamics. Curr Opin Cell Biol. 1991 Feb;3(1):82–86. doi: 10.1016/0955-0674(91)90169-y. [DOI] [PubMed] [Google Scholar]
  35. Miller M., Park M. K., Hanover J. A. Nuclear pore complex: structure, function, and regulation. Physiol Rev. 1991 Jul;71(3):909–949. doi: 10.1152/physrev.1991.71.3.909. [DOI] [PubMed] [Google Scholar]
  36. Mirkovitch J., Mirault M. E., Laemmli U. K. Organization of the higher-order chromatin loop: specific DNA attachment sites on nuclear scaffold. Cell. 1984 Nov;39(1):223–232. doi: 10.1016/0092-8674(84)90208-3. [DOI] [PubMed] [Google Scholar]
  37. Moen P. T., Jr, Fox E., Bodnar J. W. Adenovirus and minute virus of mice DNAs are localized at the nuclear periphery. Nucleic Acids Res. 1990 Feb 11;18(3):513–520. doi: 10.1093/nar/18.3.513. [DOI] [PMC free article] [PubMed] [Google Scholar]
  38. Moir R. D., Donaldson A. D., Stewart M. Expression in Escherichia coli of human lamins A and C: influence of head and tail domains on assembly properties and paracrystal formation. J Cell Sci. 1991 Jun;99(Pt 2):363–372. doi: 10.1242/jcs.99.2.363. [DOI] [PubMed] [Google Scholar]
  39. Nigg E. A. Assembly-disassembly of the nuclear lamina. Curr Opin Cell Biol. 1992 Feb;4(1):105–109. doi: 10.1016/0955-0674(92)90066-l. [DOI] [PubMed] [Google Scholar]
  40. Ohmura Y., Teraoka H., Tsukada K. A protein-tyrosine kinase in the nuclear matrix from rat liver. FEBS Lett. 1986 Nov 24;208(2):451–454. doi: 10.1016/0014-5793(86)81067-5. [DOI] [PubMed] [Google Scholar]
  41. Pagliacci M. C., Smacchia M., Migliorati G., Grignani F., Riccardi C., Nicoletti I. Growth-inhibitory effects of the natural phyto-oestrogen genistein in MCF-7 human breast cancer cells. Eur J Cancer. 1994;30A(11):1675–1682. doi: 10.1016/0959-8049(94)00262-4. [DOI] [PubMed] [Google Scholar]
  42. Pombo A., Ferreira J., Bridge E., Carmo-Fonseca M. Adenovirus replication and transcription sites are spatially separated in the nucleus of infected cells. EMBO J. 1994 Nov 1;13(21):5075–5085. doi: 10.1002/j.1460-2075.1994.tb06837.x. [DOI] [PMC free article] [PubMed] [Google Scholar]
  43. Rapaport E. Compartmentalized ATP pools produced from adenosine are nuclear pools. J Cell Physiol. 1980 Nov;105(2):267–274. doi: 10.1002/jcp.1041050210. [DOI] [PubMed] [Google Scholar]
  44. Reed J. C., Tanaka S., Cuddy M. Cell cycle analysis of p26-BCL-2 protein levels in proliferating lymphoma and leukemia cell lines. Cancer Res. 1992 May 15;52(10):2802–2805. [PubMed] [Google Scholar]
  45. Ricigliano J. W., Brough D. E., Klessig D. F. Identification of a high-molecular-weight cellular protein complex containing the adenovirus DNA binding protein. Virology. 1994 Aug 1;202(2):715–723. doi: 10.1006/viro.1994.1393. [DOI] [PubMed] [Google Scholar]
  46. Rosenfeld P. J., O'Neill E. A., Wides R. J., Kelly T. J. Sequence-specific interactions between cellular DNA-binding proteins and the adenovirus origin of DNA replication. Mol Cell Biol. 1987 Feb;7(2):875–886. doi: 10.1128/mcb.7.2.875. [DOI] [PMC free article] [PubMed] [Google Scholar]
  47. Rydell E. L., Olofsson J., Hellem S., Axelsson K. L. Tyrosine kinase activities in normal and neoplastic epithelia tissue of the human upper aero-digestive tract. Second Messengers Phosphoproteins. 1991;13(4):217–229. [PubMed] [Google Scholar]
  48. Sargeant P., Farndale R. W., Sage S. O. ADP- and thapsigargin-evoked Ca2+ entry and protein-tyrosine phosphorylation are inhibited by the tyrosine kinase inhibitors genistein and methyl-2,5-dihydroxycinnamate in fura-2-loaded human platelets. J Biol Chem. 1993 Aug 25;268(24):18151–18156. [PubMed] [Google Scholar]
  49. Schaack J., Ho W. Y., Freimuth P., Shenk T. Adenovirus terminal protein mediates both nuclear matrix association and efficient transcription of adenovirus DNA. Genes Dev. 1990 Jul;4(7):1197–1208. doi: 10.1101/gad.4.7.1197. [DOI] [PubMed] [Google Scholar]
  50. Shisheva A., Shechter Y. Quercetin selectively inhibits insulin receptor function in vitro and the bioresponses of insulin and insulinomimetic agents in rat adipocytes. Biochemistry. 1992 Sep 1;31(34):8059–8063. doi: 10.1021/bi00149a041. [DOI] [PubMed] [Google Scholar]
  51. Takahashi K., Suzuki K. Association of insulin-like growth-factor-I-induced DNA synthesis with phosphorylation and nuclear exclusion of p53 in human breast cancer MCF-7 cells. Int J Cancer. 1993 Sep 30;55(3):453–458. doi: 10.1002/ijc.2910550322. [DOI] [PubMed] [Google Scholar]
  52. Tamanoi F., Stillman B. W. The origin of adenovirus DNA replication. Curr Top Microbiol Immunol. 1984;109:75–87. doi: 10.1007/978-3-642-69460-8_3. [DOI] [PubMed] [Google Scholar]
  53. Tawfic S., Ahmed K. Association of casein kinase 2 with nuclear matrix. Possible role in nuclear matrix protein phosphorylation. J Biol Chem. 1994 Mar 11;269(10):7489–7493. [PubMed] [Google Scholar]
  54. Tawfic S., Ahmed K. Growth stimulus-mediated differential translocation of casein kinase 2 to the nuclear matrix. Evidence based on androgen action in the prostate. J Biol Chem. 1994 Oct 7;269(40):24615–24620. [PubMed] [Google Scholar]
  55. Temperley S. M., Hay R. T. Recognition of the adenovirus type 2 origin of DNA replication by the virally encoded DNA polymerase and preterminal proteins. EMBO J. 1992 Feb;11(2):761–768. doi: 10.1002/j.1460-2075.1992.tb05109.x. [DOI] [PMC free article] [PubMed] [Google Scholar]
  56. Teraoka H., Ohmura Y., Tsukada K. The nuclear matrix from rat liver is capable of phosphorylating exogenous tyrosine-containing substrates. Biochem Int. 1989 Jun;18(6):1203–1210. [PubMed] [Google Scholar]
  57. Umezawa K., Hori T., Tajima H., Imoto M., Isshiki K., Takeuchi T. Inhibition of epidermal growth factor-induced DNA synthesis by tyrosine kinase inhibitors. FEBS Lett. 1990 Jan 29;260(2):198–200. doi: 10.1016/0014-5793(90)80102-o. [DOI] [PubMed] [Google Scholar]
  58. Wang J. Y. Nuclear protein tyrosine kinases. Trends Biochem Sci. 1994 Sep;19(9):373–376. doi: 10.1016/0968-0004(94)90114-7. [DOI] [PubMed] [Google Scholar]
  59. Zhai Z. H., Nickerson J. A., Krochmalnic G., Penman S. Alterations in nuclear matrix structure after adenovirus infection. J Virol. 1987 Apr;61(4):1007–1018. doi: 10.1128/jvi.61.4.1007-1018.1987. [DOI] [PMC free article] [PubMed] [Google Scholar]

Articles from Journal of Virology are provided here courtesy of American Society for Microbiology (ASM)

RESOURCES