Skip to main content
Journal of Virology logoLink to Journal of Virology
. 1996 May;70(5):3084–3092. doi: 10.1128/jvi.70.5.3084-3092.1996

Brucella abortus conjugated with a peptide derived from the V3 loop of human immunodeficiency virus (HIV) type 1 induces HIV-specific cytotoxic T-cell responses in normal and in CD4+ cell-depleted BALB/c mice.

C Lapham 1, B Golding 1, J Inman 1, R Blackburn 1, J Manischewitz 1, P Highet 1, H Golding 1
PMCID: PMC190170  PMID: 8627787

Abstract

We have previously shown that immunization of mice with human immunodeficiency virus (HIV)-derived proteins or peptides conjugated to inactivated Brucella abortus induces the secretion of virus-neutralizing antibodies, predominantly of the immunoglobulin G2a (IgG2a) isotype. In addition, B. abortus activates human CD4+ and CD8+ cells to secrete gamma interferon. Since these are both characteristics of a Th1-type immune response, which is associated with the development of cell-mediated immunity, it was important to determine if B. abortus conjugates would also act as a carrier to induce a cytotoxic T-lymphocyte (CTL) response. To test this hypothesis, we conjugated an 18-amino-acid peptide from the V3 loop of the MN strain of HIV-1 gp120 that contains both B- and cytotoxic T-cell epitopes to B. abortus (B. abortus-MN 18-mer). A 10-amino-acid fragment of this peptide has been shown to be the minimal CTL determinant presented by murine H-2Dd. It was found that two in vivo immunizations with 10(8) organisms of B. abortus-MN 18-mer followed by in vitro stimulation with peptide induced a virus-specific CTL response. Conjugation to B. abortus was required for in vivo priming, since there was no induction of memory CTLs when B. abortus was only mixed with peptide. Targets pulsed with peptide as well as those infected with a vaccinia virus encoding HIV gp160 were killed, demonstrating recognition of naturally processed envelope. Also, major histocompatibility complex-incompatible L cells which were infected with vaccinia viruses that encoded H-2Dd, but not H-2Kd, and pulsed with peptide were lysed. This demonstrated the appropriate major histocompatibility complex class I restriction. Treatment of the mice with anti-L3T4 prior to immunization caused a severe depletion of CD4+ lymphocytes, yet it did not decrease the CTL priming. Thus, inactivated B. abortus can induce non-CD4+ cells to produce the cytokines required for CTL induction. We conclude that B. abortus stimulates a cellular as well as a humoral immune response, even in the relative absence of CD4+ helper cells. It may be a particularly useful vaccine carrier in HIV-1-infected individuals or others with impaired CD4+ T-cell function.

Full Text

The Full Text of this article is available as a PDF (313.4 KB).

Selected References

These references are in PubMed. This may not be the complete list of references from this article.

  1. Bennink J. R., Yewdell J. W., Smith G. L., Moller C., Moss B. Recombinant vaccinia virus primes and stimulates influenza haemagglutinin-specific cytotoxic T cells. Nature. 1984 Oct 11;311(5986):578–579. doi: 10.1038/311578a0. [DOI] [PubMed] [Google Scholar]
  2. Bergmann C., Stohlmann S. A., McMillan M. An endogenously synthesized decamer peptide efficiently primes cytotoxic T cells specific for the HIV-1 envelope glycoprotein. Eur J Immunol. 1993 Nov;23(11):2777–2781. doi: 10.1002/eji.1830231109. [DOI] [PubMed] [Google Scholar]
  3. Bloom E. T., Horvath J. A. Cellular and molecular mechanisms of the IL-12-induced increase in allospecific murine cytolytic T cell activity. Implications for the age-related decline in CTL. J Immunol. 1994 May 1;152(9):4242–4254. [PubMed] [Google Scholar]
  4. Bottomly K. A functional dichotomy in CD4+ T lymphocytes. Immunol Today. 1988 Sep;9(9):268–274. doi: 10.1016/0167-5699(88)91308-4. [DOI] [PubMed] [Google Scholar]
  5. Cease K. B., Berzofsky J. A. Toward a vaccine for AIDS: the emergence of immunobiology-based vaccine development. Annu Rev Immunol. 1994;12:923–989. doi: 10.1146/annurev.iy.12.040194.004423. [DOI] [PubMed] [Google Scholar]
  6. Chouaib S., Chehimi J., Bani L., Genetet N., Tursz T., Gay F., Trinchieri G., Mami-Chouaib F. Interleukin 12 induces the differentiation of major histocompatibility complex class I-primed cytotoxic T-lymphocyte precursors into allospecific cytotoxic effectors. Proc Natl Acad Sci U S A. 1994 Dec 20;91(26):12659–12663. doi: 10.1073/pnas.91.26.12659. [DOI] [PMC free article] [PubMed] [Google Scholar]
  7. Ehlers S., Smith K. A. Differentiation of T cell lymphokine gene expression: the in vitro acquisition of T cell memory. J Exp Med. 1991 Jan 1;173(1):25–36. doi: 10.1084/jem.173.1.25. [DOI] [PMC free article] [PubMed] [Google Scholar]
  8. Fenyö E. M. Antigenic variation of primate lentiviruses in humans and experimentally infected macaques. Immunol Rev. 1994 Aug;140:131–146. doi: 10.1111/j.1600-065x.1994.tb00868.x. [DOI] [PubMed] [Google Scholar]
  9. Golding B., Inman J., Highet P., Blackburn R., Manischewitz J., Blyveis N., Angus R. D., Golding H. Brucella abortus conjugated with a gp120 or V3 loop peptide derived from human immunodeficiency virus (HIV) type 1 induces neutralizing anti-HIV antibodies, and the V3-B. abortus conjugate is effective even after CD4+ T-cell depletion. J Virol. 1995 Jun;69(6):3299–3307. doi: 10.1128/jvi.69.6.3299-3307.1995. [DOI] [PMC free article] [PubMed] [Google Scholar]
  10. Goldstein J., Hoffman T., Frasch C., Lizzio E. F., Beining P. R., Hochstein D., Lee Y. L., Angus R. D., Golding B. Lipopolysaccharide (LPS) from Brucella abortus is less toxic than that from Escherichia coli, suggesting the possible use of B. abortus or LPS from B. abortus as a carrier in vaccines. Infect Immun. 1992 Apr;60(4):1385–1389. doi: 10.1128/iai.60.4.1385-1389.1992. [DOI] [PMC free article] [PubMed] [Google Scholar]
  11. Harding C. V., Song R. Phagocytic processing of exogenous particulate antigens by macrophages for presentation by class I MHC molecules. J Immunol. 1994 Dec 1;153(11):4925–4933. [PubMed] [Google Scholar]
  12. Ikonomidis G., Paterson Y., Kos F. J., Portnoy D. A. Delivery of a viral antigen to the class I processing and presentation pathway by Listeria monocytogenes. J Exp Med. 1994 Dec 1;180(6):2209–2218. doi: 10.1084/jem.180.6.2209. [DOI] [PMC free article] [PubMed] [Google Scholar]
  13. Klenerman P., Rowland-Jones S., McAdam S., Edwards J., Daenke S., Lalloo D., Köppe B., Rosenberg W., Boyd D., Edwards A. Cytotoxic T-cell activity antagonized by naturally occurring HIV-1 Gag variants. Nature. 1994 Jun 2;369(6479):403–407. doi: 10.1038/369403a0. [DOI] [PubMed] [Google Scholar]
  14. Koup R. A., Safrit J. T., Cao Y., Andrews C. A., McLeod G., Borkowsky W., Farthing C., Ho D. D. Temporal association of cellular immune responses with the initial control of viremia in primary human immunodeficiency virus type 1 syndrome. J Virol. 1994 Jul;68(7):4650–4655. doi: 10.1128/jvi.68.7.4650-4655.1994. [DOI] [PMC free article] [PubMed] [Google Scholar]
  15. Kovacsovics-Bankowski M., Clark K., Benacerraf B., Rock K. L. Efficient major histocompatibility complex class I presentation of exogenous antigen upon phagocytosis by macrophages. Proc Natl Acad Sci U S A. 1993 Jun 1;90(11):4942–4946. doi: 10.1073/pnas.90.11.4942. [DOI] [PMC free article] [PubMed] [Google Scholar]
  16. Kozlowski S., Corr M., Takeshita T., Boyd L. F., Pendleton C. D., Germain R. N., Berzofsky J. A., Margulies D. H. Serum angiotensin-1 converting enzyme activity processes a human immunodeficiency virus 1 gp160 peptide for presentation by major histocompatibility complex class I molecules. J Exp Med. 1992 Jun 1;175(6):1417–1422. doi: 10.1084/jem.175.6.1417. [DOI] [PMC free article] [PubMed] [Google Scholar]
  17. Krutzsch H. C., Inman J. K. N-isopropyliodoacetamide in the reduction and alkylation of proteins: use in microsequence analysis. Anal Biochem. 1993 Feb 15;209(1):109–116. doi: 10.1006/abio.1993.1089. [DOI] [PubMed] [Google Scholar]
  18. Lewis D. B., Yu C. C., Meyer J., English B. K., Kahn S. J., Wilson C. B. Cellular and molecular mechanisms for reduced interleukin 4 and interferon-gamma production by neonatal T cells. J Clin Invest. 1991 Jan;87(1):194–202. doi: 10.1172/JCI114970. [DOI] [PMC free article] [PubMed] [Google Scholar]
  19. Mackewicz C. E., Blackbourn D. J., Levy J. A. CD8+ T cells suppress human immunodeficiency virus replication by inhibiting viral transcription. Proc Natl Acad Sci U S A. 1995 Mar 14;92(6):2308–2312. doi: 10.1073/pnas.92.6.2308. [DOI] [PMC free article] [PubMed] [Google Scholar]
  20. Mackewicz C. E., Ortega H. W., Levy J. A. CD8+ cell anti-HIV activity correlates with the clinical state of the infected individual. J Clin Invest. 1991 Apr;87(4):1462–1466. doi: 10.1172/JCI115153. [DOI] [PMC free article] [PubMed] [Google Scholar]
  21. McAdam S., Klenerman P., Tussey L., Rowland-Jones S., Lalloo D., Phillips R., Edwards A., Giangrande P., Brown A. L., Gotch F. Immunogenic HIV variant peptides that bind to HLA-B8 can fail to stimulate cytotoxic T lymphocyte responses. J Immunol. 1995 Sep 1;155(5):2729–2736. [PubMed] [Google Scholar]
  22. Mehrotra P. T., Wu D., Crim J. A., Mostowski H. S., Siegel J. P. Effects of IL-12 on the generation of cytotoxic activity in human CD8+ T lymphocytes. J Immunol. 1993 Sep 1;151(5):2444–2452. [PubMed] [Google Scholar]
  23. Mosmann T. R., Coffman R. L. TH1 and TH2 cells: different patterns of lymphokine secretion lead to different functional properties. Annu Rev Immunol. 1989;7:145–173. doi: 10.1146/annurev.iy.07.040189.001045. [DOI] [PubMed] [Google Scholar]
  24. Nixon D. F., McMichael A. J. Cytotoxic T-cell recognition of HIV proteins and peptides. AIDS. 1991 Sep;5(9):1049–1059. [PubMed] [Google Scholar]
  25. Pfeifer J. D., Wick M. J., Roberts R. L., Findlay K., Normark S. J., Harding C. V. Phagocytic processing of bacterial antigens for class I MHC presentation to T cells. Nature. 1993 Jan 28;361(6410):359–362. doi: 10.1038/361359a0. [DOI] [PubMed] [Google Scholar]
  26. Sherman L. A., Burke T. A., Biggs J. A. Extracellular processing of peptide antigens that bind class I major histocompatibility molecules. J Exp Med. 1992 May 1;175(5):1221–1226. doi: 10.1084/jem.175.5.1221. [DOI] [PMC free article] [PubMed] [Google Scholar]
  27. Shirai M., Pendleton C. D., Ahlers J., Takeshita T., Newman M., Berzofsky J. A. Helper-cytotoxic T lymphocyte (CTL) determinant linkage required for priming of anti-HIV CD8+ CTL in vivo with peptide vaccine constructs. J Immunol. 1994 Jan 15;152(2):549–556. [PubMed] [Google Scholar]
  28. Svetić A., Jian Y. C., Lu P., Finkelman F. D., Gause W. C. Brucella abortus induces a novel cytokine gene expression pattern characterized by elevated IL-10 and IFN-gamma in CD4+ T cells. Int Immunol. 1993 Aug;5(8):877–883. doi: 10.1093/intimm/5.8.877. [DOI] [PubMed] [Google Scholar]
  29. Ungphakorn J., Sittitrai W. The Thai response to the HIV/AIDS epidemic. AIDS. 1994;8 (Suppl 2):S155–S163. [PubMed] [Google Scholar]
  30. Voss G., Hunsmann G. Cellular immune response to SIVmac and HIV-2 in macaques: model for the human HIV-1 infection. J Acquir Immune Defic Syndr. 1993 Sep;6(9):969–976. [PubMed] [Google Scholar]
  31. Walker B. D., Plata F. Cytotoxic T lymphocytes against HIV. AIDS. 1990 Mar;4(3):177–184. doi: 10.1097/00002030-199003000-00001. [DOI] [PubMed] [Google Scholar]
  32. Walker C. M., Erickson A. L., Hsueh F. C., Levy J. A. Inhibition of human immunodeficiency virus replication in acutely infected CD4+ cells by CD8+ cells involves a noncytotoxic mechanism. J Virol. 1991 Nov;65(11):5921–5927. doi: 10.1128/jvi.65.11.5921-5927.1991. [DOI] [PMC free article] [PubMed] [Google Scholar]
  33. Walker C. M. Non-cytolytic control of HIV replication by CD8+ T cells. Semin Immunol. 1993 Jun;5(3):195–201. doi: 10.1006/smim.1993.1023. [DOI] [PubMed] [Google Scholar]
  34. White W. I., Cassatt D. R., Madsen J., Burke S. J., Woods R. M., Wassef N. M., Alving C. R., Koenig S. Antibody and cytotoxic T-lymphocyte responses to a single liposome-associated peptide antigen. Vaccine. 1995 Aug;13(12):1111–1122. doi: 10.1016/0264-410x(94)00058-u. [DOI] [PubMed] [Google Scholar]
  35. Zaitseva M. B., Golding H., Betts M., Yamauchi A., Bloom E. T., Butler L. E., Stevan L., Golding B. Human peripheral blood CD4+ and CD8+ T cells express Th1-like cytokine mRNA and proteins following in vitro stimulation with heat-inactivated Brucella abortus. Infect Immun. 1995 Jul;63(7):2720–2728. doi: 10.1128/iai.63.7.2720-2728.1995. [DOI] [PMC free article] [PubMed] [Google Scholar]

Articles from Journal of Virology are provided here courtesy of American Society for Microbiology (ASM)

RESOURCES