Skip to main content
Journal of Virology logoLink to Journal of Virology
. 1996 Jun;70(6):3449–3460. doi: 10.1128/jvi.70.6.3449-3460.1996

Nucleoplasmic and nucleolar distribution of the adenovirus IVa2 gene product.

P Lutz 1, F Puvion-Dutilleul 1, Y Lutz 1, C Kedinger 1
PMCID: PMC190218  PMID: 8648677

Abstract

Sequence elements (DE) located downstream of the adenovirus major late promoter start site have previously been shown to be essential for the activation of this promoter after the onset of viral DNA replication. Two proteins (DEF-A and DEF-B) bind to these elements in a late-phase-dependent manner and contribute to this activation. DEF-B corresponds to a dimer of the adenovirus IVa2 gene product (pIVa2, 449 residues), while DEF-A is a heteromeric protein also comprising pIVa2. As revealed by specific immunofluorescence staining of infected cells, pIVa2 is targeted to the nucleus, where it distributes to both nucleoplasmic and nucleolar structures. We have identified the pIVa2 nuclear localization signal (NLS) as a basic peptide element at the C terminus of the protein (residues 432 to 449). An element essential for nucleolar localization (NuLS) has been mapped in the N-terminal part of pIVa2 (between residues 50 and 136). While NuLS activity is dependent upon an intact NLS, we show that both NLS and NuLS functions are independent of specific DNA-binding activity. As visualized by immunoelectron microscopy, pIVa2 is detected in the nucleoplasm at the level of the fibrillogranular network which is active in viral transcription. More surprisingly, pIVa2 accumulates within electron-dense amorphous inclusions found both in the nucleoplasm and in the nucleolus. Altogether, these results suggest that, besides controlling major late promoter transcription, pIVa2 serves additional, as yet unknown functions.

Full Text

The Full Text of this article is available as a PDF (1.4 MB).

Selected References

These references are in PubMed. This may not be the complete list of references from this article.

  1. Alonso-Caplen F. V., Katze M. G., Krug R. M. Efficient transcription, not translation, is dependent on adenovirus tripartite leader sequences at late times of infection. J Virol. 1988 May;62(5):1606–1616. doi: 10.1128/jvi.62.5.1606-1616.1988. [DOI] [PMC free article] [PubMed] [Google Scholar]
  2. Besse S., Puvion-Dutilleul F. Anchorage of adenoviral RNAs to clusters of interchromatin granules. Gene Expr. 1995;5(2):79–92. [PMC free article] [PubMed] [Google Scholar]
  3. Besse S., Puvion-Dutilleul F. Compartmentalization of cellular and viral DNAs in adenovirus type 5 infection as revealed by ultrastructural in situ hybridization. Chromosome Res. 1994 Mar;2(2):123–135. doi: 10.1007/BF01553491. [DOI] [PubMed] [Google Scholar]
  4. Binger M. H., Flint S. J. Accumulation of early and intermediate mRNA species during subgroup C adenovirus productive infections. Virology. 1984 Jul 30;136(2):387–403. doi: 10.1016/0042-6822(84)90175-2. [DOI] [PubMed] [Google Scholar]
  5. Bocco J. L., Reimund B., Chatton B., Kedinger C. Rb may act as a transcriptional co-activator in undifferentiated F9 cells. Oncogene. 1993 Nov;8(11):2977–2986. [PubMed] [Google Scholar]
  6. Boulikas T. Putative nuclear localization signals (NLS) in protein transcription factors. J Cell Biochem. 1994 May;55(1):32–58. doi: 10.1002/jcb.240550106. [DOI] [PubMed] [Google Scholar]
  7. Challberg M. D., Kelly T. J. Animal virus DNA replication. Annu Rev Biochem. 1989;58:671–717. doi: 10.1146/annurev.bi.58.070189.003323. [DOI] [PubMed] [Google Scholar]
  8. Chelsky D., Ralph R., Jonak G. Sequence requirements for synthetic peptide-mediated translocation to the nucleus. Mol Cell Biol. 1989 Jun;9(6):2487–2492. doi: 10.1128/mcb.9.6.2487. [DOI] [PMC free article] [PubMed] [Google Scholar]
  9. Chen C., Okayama H. High-efficiency transformation of mammalian cells by plasmid DNA. Mol Cell Biol. 1987 Aug;7(8):2745–2752. doi: 10.1128/mcb.7.8.2745. [DOI] [PMC free article] [PubMed] [Google Scholar]
  10. Crossland L. D., Raskas H. J. Identification of adenovirus genes that require template replication for expression. J Virol. 1983 Jun;46(3):737–748. doi: 10.1128/jvi.46.3.737-748.1983. [DOI] [PMC free article] [PubMed] [Google Scholar]
  11. Créancier L., Prats H., Zanibellato C., Amalric F., Bugler B. Determination of the functional domains involved in nucleolar targeting of nucleolin. Mol Biol Cell. 1993 Dec;4(12):1239–1250. doi: 10.1091/mbc.4.12.1239. [DOI] [PMC free article] [PubMed] [Google Scholar]
  12. Dingwall C., Laskey R. A. Nuclear targeting sequences--a consensus? Trends Biochem Sci. 1991 Dec;16(12):478–481. doi: 10.1016/0968-0004(91)90184-w. [DOI] [PubMed] [Google Scholar]
  13. Dingwall C., Laskey R. A. Protein import into the cell nucleus. Annu Rev Cell Biol. 1986;2:367–390. doi: 10.1146/annurev.cb.02.110186.002055. [DOI] [PubMed] [Google Scholar]
  14. Furcinitti P. S., van Oostrum J., Burnett R. M. Adenovirus polypeptide IX revealed as capsid cement by difference images from electron microscopy and crystallography. EMBO J. 1989 Dec 1;8(12):3563–3570. doi: 10.1002/j.1460-2075.1989.tb08528.x. [DOI] [PMC free article] [PubMed] [Google Scholar]
  15. Girard J. P., Bagni C., Caizergues-Ferrer M., Amalric F., Lapeyre B. Identification of a segment of the small nucleolar ribonucleoprotein-associated protein GAR1 that is sufficient for nucleolar accumulation. J Biol Chem. 1994 Jul 15;269(28):18499–18506. [PubMed] [Google Scholar]
  16. Greber U. F., Willetts M., Webster P., Helenius A. Stepwise dismantling of adenovirus 2 during entry into cells. Cell. 1993 Nov 5;75(3):477–486. doi: 10.1016/0092-8674(93)90382-z. [DOI] [PubMed] [Google Scholar]
  17. Green S., Issemann I., Sheer E. A versatile in vivo and in vitro eukaryotic expression vector for protein engineering. Nucleic Acids Res. 1988 Jan 11;16(1):369–369. doi: 10.1093/nar/16.1.369. [DOI] [PMC free article] [PubMed] [Google Scholar]
  18. Hasson T. B., Ornelles D. A., Shenk T. Adenovirus L1 52- and 55-kilodalton proteins are present within assembling virions and colocalize with nuclear structures distinct from replication centers. J Virol. 1992 Oct;66(10):6133–6142. doi: 10.1128/jvi.66.10.6133-6142.1992. [DOI] [PMC free article] [PubMed] [Google Scholar]
  19. Jansen-Durr P., Boeuf H., Kédinger C. Replication-induced stimulation of the major late promoter of adenovirus is correlated to the binding of a factor to sequences in the first intron. Nucleic Acids Res. 1988 May 11;16(9):3771–3786. doi: 10.1093/nar/16.9.3771. [DOI] [PMC free article] [PubMed] [Google Scholar]
  20. Jansen-Durr P., Mondésert G., Kédinger C. Replication-dependent activation of the adenovirus major late promoter is mediated by the increased binding of a transcription factor to sequences in the first intron. J Virol. 1989 Dec;63(12):5124–5132. doi: 10.1128/jvi.63.12.5124-5132.1989. [DOI] [PMC free article] [PubMed] [Google Scholar]
  21. Kalland K. H., Langhoff E., Bos H. J., Göttlinger H., Haseltine W. A. Rex-dependent nucleolar accumulation of HTLV-I mRNAs. New Biol. 1991 Apr;3(4):389–397. [PubMed] [Google Scholar]
  22. Kunkel T. A., Roberts J. D., Zakour R. A. Rapid and efficient site-specific mutagenesis without phenotypic selection. Methods Enzymol. 1987;154:367–382. doi: 10.1016/0076-6879(87)54085-x. [DOI] [PubMed] [Google Scholar]
  23. Leong K., Lee W., Berk A. J. High-level transcription from the adenovirus major late promoter requires downstream binding sites for late-phase-specific factors. J Virol. 1990 Jan;64(1):51–60. doi: 10.1128/jvi.64.1.51-60.1990. [DOI] [PMC free article] [PubMed] [Google Scholar]
  24. Lewis J. B., Esche H., Smart J. E., Stillman B. W., Harter M. L., Mathews M. B. Organization and expression of the left third of the genome of adenovirus. Cold Spring Harb Symp Quant Biol. 1980;44(Pt 1):493–508. doi: 10.1101/sqb.1980.044.01.052. [DOI] [PubMed] [Google Scholar]
  25. Lutz P., Kedinger C. Properties of the adenovirus IVa2 gene product, an effector of late-phase-dependent activation of the major late promoter. J Virol. 1996 Mar;70(3):1396–1405. doi: 10.1128/jvi.70.3.1396-1405.1996. [DOI] [PMC free article] [PubMed] [Google Scholar]
  26. MacLean C. A., Rixon F. J., Marsden H. S. The products of gene US11 of herpes simplex virus type 1 are DNA-binding and localize to the nucleoli of infected cells. J Gen Virol. 1987 Jul;68(Pt 7):1921–1937. doi: 10.1099/0022-1317-68-7-1921. [DOI] [PubMed] [Google Scholar]
  27. Mahé D., Roussev R., Lutz Y., Puvion-Dutilleul F., Fuchs J. P. Two hnRNP-associated proteins share common structural features with the adenoviral 72-kDa protein. Exp Cell Res. 1995 Jan;216(1):1–12. doi: 10.1006/excr.1995.1001. [DOI] [PubMed] [Google Scholar]
  28. Mansour S. L., Grodzicker T., Tjian R. Downstream sequences affect transcription initiation from the adenovirus major late promoter. Mol Cell Biol. 1986 Jul;6(7):2684–2694. doi: 10.1128/mcb.6.7.2684. [DOI] [PMC free article] [PubMed] [Google Scholar]
  29. Mason B. B., Davis A. R., Bhat B. M., Chengalvala M., Lubeck M. D., Zandle G., Kostek B., Cholodofsky S., Dheer S., Molnar-Kimber K. Adenovirus vaccine vectors expressing hepatitis B surface antigen: importance of regulatory elements in the adenovirus major late intron. Virology. 1990 Aug;177(2):452–461. doi: 10.1016/0042-6822(90)90509-p. [DOI] [PubMed] [Google Scholar]
  30. Mondesert G., Tribouley C., Kedinger C. Identification of a novel downstream binding protein implicated in late-phase-specific activation of the adenovirus major late promotor. Nucleic Acids Res. 1992 Aug 11;20(15):3881–3889. doi: 10.1093/nar/20.15.3881. [DOI] [PMC free article] [PubMed] [Google Scholar]
  31. Mondésert G., Kédinger C. Cooperation between upstream and downstream elements of the adenovirus major late promoter for maximal late phase-specific transcription. Nucleic Acids Res. 1991 Jun 25;19(12):3221–3228. doi: 10.1093/nar/19.12.3221. [DOI] [PMC free article] [PubMed] [Google Scholar]
  32. Moran E. Interaction of adenoviral proteins with pRB and p53. FASEB J. 1993 Jul;7(10):880–885. doi: 10.1096/fasebj.7.10.8344487. [DOI] [PubMed] [Google Scholar]
  33. Nemerow G. R., Cheresh D. A., Wickham T. J. Adenovirus entry into host cells: a role for alpha(v) integrins. Trends Cell Biol. 1994 Feb;4(2):52–55. doi: 10.1016/0962-8924(94)90010-8. [DOI] [PubMed] [Google Scholar]
  34. Nosaka T., Takamatsu T., Miyazaki Y., Sano K., Sato A., Kubota S., Sakurai M., Ariumi Y., Nakai M., Fujita S. Cytotoxic activity of rev protein of human immunodeficiency virus type 1 by nucleolar dysfunction. Exp Cell Res. 1993 Nov;209(1):89–102. doi: 10.1006/excr.1993.1289. [DOI] [PubMed] [Google Scholar]
  35. Puvion-Dutilleul F., Bachellerie J. P., Visa N., Puvion E. Rearrangements of intranuclear structures involved in RNA processing in response to adenovirus infection. J Cell Sci. 1994 Jun;107(Pt 6):1457–1468. doi: 10.1242/jcs.107.6.1457. [DOI] [PubMed] [Google Scholar]
  36. Puvion-Dutilleul F., Chelbi-Alix M. K., Koken M., Quignon F., Puvion E., de Thé H. Adenovirus infection induces rearrangements in the intranuclear distribution of the nuclear body-associated PML protein. Exp Cell Res. 1995 May;218(1):9–16. doi: 10.1006/excr.1995.1125. [DOI] [PubMed] [Google Scholar]
  37. Puvion-Dutilleul F., Christensen M. E. Alterations of fibrillarin distribution and nucleolar ultrastructure induced by adenovirus infection. Eur J Cell Biol. 1993 Jun;61(1):168–176. [PubMed] [Google Scholar]
  38. Puvion-Dutilleul F. Localization of viral-specific 21 kDa protein in nucleoli of herpes simplex infected cells. Eur J Cell Biol. 1987 Jun;43(3):487–498. [PubMed] [Google Scholar]
  39. Puvion-Dutilleul F., Puvion E. Analysis by in situ hybridization and autoradiography of sites of replication and storage of single- and double-stranded adenovirus type 5 DNA in lytically infected HeLa cells. J Struct Biol. 1990 May;103(3):280–289. doi: 10.1016/1047-8477(90)90046-f. [DOI] [PubMed] [Google Scholar]
  40. Puvion-Dutilleul F., Puvion E. Replicating single-stranded adenovirus type 5 DNA molecules accumulate within well-delimited intranuclear areas of lytically infected HeLa cells. Eur J Cell Biol. 1990 Aug;52(2):379–388. [PubMed] [Google Scholar]
  41. Puvion-Dutilleul F., Puvion E. Sites of transcription of adenovirus type 5 genomes in relation to early viral DNA replication in infected HeLa cells. A high resolution in situ hybridization and autoradiographical study. Biol Cell. 1991;71(1-2):135–147. doi: 10.1016/0248-4900(91)90060-z. [DOI] [PubMed] [Google Scholar]
  42. Puvion-Dutilleul F., Pédron J., Cajean-Feroldi C. Identification of intranuclear structures containing the 72K DNA-binding protein of human adenovirus type 5. Eur J Cell Biol. 1984 Jul;34(2):313–322. [PubMed] [Google Scholar]
  43. Puvion-Dutilleul F., Roussev R., Puvion E. Distribution of viral RNA molecules during the adenovirus type 5 infectious cycle in HeLa cells. J Struct Biol. 1992 May-Jun;108(3):209–220. doi: 10.1016/1047-8477(92)90021-2. [DOI] [PubMed] [Google Scholar]
  44. Roller R. J., Roizman B. The herpes simplex virus 1 RNA binding protein US11 is a virion component and associates with ribosomal 60S subunits. J Virol. 1992 Jun;66(6):3624–3632. doi: 10.1128/jvi.66.6.3624-3632.1992. [DOI] [PMC free article] [PubMed] [Google Scholar]
  45. Roth J. Postembedding labeling on Lowicryl K4M tissue sections: detection and modification of cellular components. Methods Cell Biol. 1989;31:513–551. doi: 10.1016/s0091-679x(08)61625-8. [DOI] [PubMed] [Google Scholar]
  46. Schmidt-Zachmann M. S., Nigg E. A. Protein localization to the nucleolus: a search for targeting domains in nucleolin. J Cell Sci. 1993 Jul;105(Pt 3):799–806. doi: 10.1242/jcs.105.3.799. [DOI] [PubMed] [Google Scholar]
  47. Schreiber V., de Murcia G., de Murcia J. M. A eukaryotic expression vector for the study of nuclear localization signals. Gene. 1994 Dec 15;150(2):411–412. doi: 10.1016/0378-1119(94)90466-9. [DOI] [PubMed] [Google Scholar]
  48. Silver P. A. How proteins enter the nucleus. Cell. 1991 Feb 8;64(3):489–497. doi: 10.1016/0092-8674(91)90233-o. [DOI] [PubMed] [Google Scholar]
  49. Thiry M., Puvion-Dutilleul F. Differential distribution of single-stranded DNA, double-stranded DNA, and RNA in adenovirus-induced intranuclear regions of HeLa cells. J Histochem Cytochem. 1995 Aug;43(8):749–759. doi: 10.1177/43.8.7542679. [DOI] [PubMed] [Google Scholar]
  50. Tribouley C., Lutz P., Staub A., Kedinger C. The product of the adenovirus intermediate gene IVa2 is a transcriptional activator of the major late promoter. J Virol. 1994 Jul;68(7):4450–4457. doi: 10.1128/jvi.68.7.4450-4457.1994. [DOI] [PMC free article] [PubMed] [Google Scholar]
  51. Winter N., D'Halluin J. C. Regulation of the biosynthesis of subgroup C adenovirus protein IVa2. J Virol. 1991 Oct;65(10):5250–5259. doi: 10.1128/jvi.65.10.5250-5259.1991. [DOI] [PMC free article] [PubMed] [Google Scholar]
  52. Wold W. S., Gooding L. R. Region E3 of adenovirus: a cassette of genes involved in host immunosurveillance and virus-cell interactions. Virology. 1991 Sep;184(1):1–8. doi: 10.1016/0042-6822(91)90815-s. [DOI] [PubMed] [Google Scholar]
  53. Wold W. S., Hermiston T. W., Tollefson A. E. Adenovirus proteins that subvert host defenses. Trends Microbiol. 1994 Nov;2(11):437–443. doi: 10.1016/0966-842x(94)90801-x. [DOI] [PubMed] [Google Scholar]
  54. Yan C., Mélèse T. Multiple regions of NSR1 are sufficient for accumulation of a fusion protein within the nucleolus. J Cell Biol. 1993 Dec;123(5):1081–1091. doi: 10.1083/jcb.123.5.1081. [DOI] [PMC free article] [PubMed] [Google Scholar]

Articles from Journal of Virology are provided here courtesy of American Society for Microbiology (ASM)

RESOURCES