Skip to main content
Journal of Virology logoLink to Journal of Virology
. 1996 Jun;70(6):3571–3580. doi: 10.1128/jvi.70.6.3571-3580.1996

Concerted integration of linear retroviral DNA by the avian sarcoma virus integrase in vitro: dependence on both long terminal repeat termini.

A Aiyar 1, P Hindmarsh 1, A M Skalka 1, J Leis 1
PMCID: PMC190232  PMID: 8648691

Abstract

We have reconstituted integration reactions in vitro with specially designed donor DNAs, a supercoiled plasmid acceptor, purified bacterium-derived Rous sarcoma virus integrase (IN), and a host cell DNA-bending protein, HMG1. The duplex donor DNAs are approximately 300 deoxynucleotides in length and contain only 15 bp of the RSV U3 and U5 termini at the respective ends. The donor has blunt U3 and U5 termini which end with the sequence 5'CATT. Joining of the donor DNA to the acceptor DNA is detected by using a simple biochemical assay. Integration was found to be dependent on both U3 and U5 termini; mutations in either result in a significant decrease in the level of integration in vitro. Restriction digestion of the products is consistent with most integrants representing a concerted integration in which both long terminal repeat termini come from the same donor molecule. The U5 and U3 sequences in the substrate flank a supF tRNA gene, permitting biological selection of integrants. Many integrants have been sequenced, and have all of the hallmarks of authentic viral integration, including the removal of a terminal TT dinucleotide from each donor DNA end, and duplication of acceptor sequences at the integration site without introducing deletions into the acceptor. Target site selection in the acceptor plasmid was random except that the orientation of integrants selected was apparently influenced by supF transcription. Mutations which substituted the conserved CA dinucleotide with a GA pair led to a decreased rate of integration. In 2 of 14 mutant integrants sequenced, deoxynucleotides were deleted from either the U5 or U3 terminus. In one instance, an internal CA dinucleotide was used, which resulted in a 10-bp U5 donor deletion. In the other, an internal GA dinucleotide was used, which produced a 5-bp U3 donor deletion. Both of these integrants provide further evidence that concerted integration in this reconstituted system requires interactions between IN and the U3 and U5 termini from the same donor molecule.

Full Text

The Full Text of this article is available as a PDF (478.7 KB).

Selected References

These references are in PubMed. This may not be the complete list of references from this article.

  1. Aiyar A., Ge Z., Leis J. A specific orientation of RNA secondary structures is required for initiation of reverse transcription. J Virol. 1994 Feb;68(2):611–618. doi: 10.1128/jvi.68.2.611-618.1994. [DOI] [PMC free article] [PubMed] [Google Scholar]
  2. Braiterman L. T., Boeke J. D. In vitro integration of retrotransposon Ty1: a direct physical assay. Mol Cell Biol. 1994 Sep;14(9):5719–5730. doi: 10.1128/mcb.14.9.5719. [DOI] [PMC free article] [PubMed] [Google Scholar]
  3. Brown P. O., Bowerman B., Varmus H. E., Bishop J. M. Correct integration of retroviral DNA in vitro. Cell. 1987 May 8;49(3):347–356. doi: 10.1016/0092-8674(87)90287-x. [DOI] [PubMed] [Google Scholar]
  4. Bushman F. D., Craigie R. Sequence requirements for integration of Moloney murine leukemia virus DNA in vitro. J Virol. 1990 Nov;64(11):5645–5648. doi: 10.1128/jvi.64.11.5645-5648.1990. [DOI] [PMC free article] [PubMed] [Google Scholar]
  5. Bushman F. D., Fujiwara T., Craigie R. Retroviral DNA integration directed by HIV integration protein in vitro. Science. 1990 Sep 28;249(4976):1555–1558. doi: 10.1126/science.2171144. [DOI] [PubMed] [Google Scholar]
  6. Chow C. S., Barnes C. M., Lippard S. J. A single HMG domain in high-mobility group 1 protein binds to DNAs as small as 20 base pairs containing the major cisplatin adduct. Biochemistry. 1995 Mar 7;34(9):2956–2964. doi: 10.1021/bi00009a027. [DOI] [PubMed] [Google Scholar]
  7. Cobrinik D., Aiyar A., Ge Z., Katzman M., Huang H., Leis J. Overlapping retrovirus U5 sequence elements are required for efficient integration and initiation of reverse transcription. J Virol. 1991 Jul;65(7):3864–3872. doi: 10.1128/jvi.65.7.3864-3872.1991. [DOI] [PMC free article] [PubMed] [Google Scholar]
  8. Colicelli J., Goff S. P. Mutants and pseudorevertants of Moloney murine leukemia virus with alterations at the integration site. Cell. 1985 Sep;42(2):573–580. doi: 10.1016/0092-8674(85)90114-x. [DOI] [PubMed] [Google Scholar]
  9. Craigie R., Fujiwara T., Bushman F. The IN protein of Moloney murine leukemia virus processes the viral DNA ends and accomplishes their integration in vitro. Cell. 1990 Aug 24;62(4):829–837. doi: 10.1016/0092-8674(90)90126-y. [DOI] [PubMed] [Google Scholar]
  10. Donzella G. A., Jonsson C. B., Roth M. J. Influence of substrate structure on disintegration activity of Moloney murine leukemia virus integrase. J Virol. 1993 Dec;67(12):7077–7087. doi: 10.1128/jvi.67.12.7077-7087.1993. [DOI] [PMC free article] [PubMed] [Google Scholar]
  11. Engelman A., Mizuuchi K., Craigie R. HIV-1 DNA integration: mechanism of viral DNA cleavage and DNA strand transfer. Cell. 1991 Dec 20;67(6):1211–1221. doi: 10.1016/0092-8674(91)90297-c. [DOI] [PubMed] [Google Scholar]
  12. Fitzgerald M. L., Grandgenett D. P. Retroviral integration: in vitro host site selection by avian integrase. J Virol. 1994 Jul;68(7):4314–4321. doi: 10.1128/jvi.68.7.4314-4321.1994. [DOI] [PMC free article] [PubMed] [Google Scholar]
  13. Fitzgerald M. L., Vora A. C., Zeh W. G., Grandgenett D. P. Concerted integration of viral DNA termini by purified avian myeloblastosis virus integrase. J Virol. 1992 Nov;66(11):6257–6263. doi: 10.1128/jvi.66.11.6257-6263.1992. [DOI] [PMC free article] [PubMed] [Google Scholar]
  14. Fujiwara T., Craigie R. Integration of mini-retroviral DNA: a cell-free reaction for biochemical analysis of retroviral integration. Proc Natl Acad Sci U S A. 1989 May;86(9):3065–3069. doi: 10.1073/pnas.86.9.3065. [DOI] [PMC free article] [PubMed] [Google Scholar]
  15. Jones K. S., Coleman J., Merkel G. W., Laue T. M., Skalka A. M. Retroviral integrase functions as a multimer and can turn over catalytically. J Biol Chem. 1992 Aug 15;267(23):16037–16040. [PubMed] [Google Scholar]
  16. Kapoor M., Zhang L., Mohan P. M., Padmanabhan R. Synthesis and characterization of an infectious dengue virus type-2 RNA genome (New Guinea C strain). Gene. 1995 Sep 11;162(2):175–180. doi: 10.1016/0378-1119(95)00332-z. [DOI] [PubMed] [Google Scholar]
  17. Katz R. A., Merkel G., Kulkosky J., Leis J., Skalka A. M. The avian retroviral IN protein is both necessary and sufficient for integrative recombination in vitro. Cell. 1990 Oct 5;63(1):87–95. doi: 10.1016/0092-8674(90)90290-u. [DOI] [PubMed] [Google Scholar]
  18. Katzman M., Katz R. A., Skalka A. M., Leis J. The avian retroviral integration protein cleaves the terminal sequences of linear viral DNA at the in vivo sites of integration. J Virol. 1989 Dec;63(12):5319–5327. doi: 10.1128/jvi.63.12.5319-5327.1989. [DOI] [PMC free article] [PubMed] [Google Scholar]
  19. Kitamura Y., Lee Y. M., Coffin J. M. Nonrandom integration of retroviral DNA in vitro: effect of CpG methylation. Proc Natl Acad Sci U S A. 1992 Jun 15;89(12):5532–5536. doi: 10.1073/pnas.89.12.5532. [DOI] [PMC free article] [PubMed] [Google Scholar]
  20. Kukolj G., Skalka A. M. Enhanced and coordinated processing of synapsed viral DNA ends by retroviral integrases in vitro. Genes Dev. 1995 Oct 15;9(20):2556–2567. doi: 10.1101/gad.9.20.2556. [DOI] [PubMed] [Google Scholar]
  21. Murphy J. E., De Los Santos T., Goff S. P. Mutational analysis of the sequences at the termini of the Moloney murine leukemia virus DNA required for integration. Virology. 1993 Aug;195(2):432–440. doi: 10.1006/viro.1993.1393. [DOI] [PubMed] [Google Scholar]
  22. Murphy J. E., Goff S. P. A mutation at one end of Moloney murine leukemia virus DNA blocks cleavage of both ends by the viral integrase in vivo. J Virol. 1992 Aug;66(8):5092–5095. doi: 10.1128/jvi.66.8.5092-5095.1992. [DOI] [PMC free article] [PubMed] [Google Scholar]
  23. Pil P. M., Chow C. S., Lippard S. J. High-mobility-group 1 protein mediates DNA bending as determined by ring closures. Proc Natl Acad Sci U S A. 1993 Oct 15;90(20):9465–9469. doi: 10.1073/pnas.90.20.9465. [DOI] [PMC free article] [PubMed] [Google Scholar]
  24. Roth M. J., Schwartzberg P. L., Goff S. P. Structure of the termini of DNA intermediates in the integration of retroviral DNA: dependence on IN function and terminal DNA sequence. Cell. 1989 Jul 14;58(1):47–54. doi: 10.1016/0092-8674(89)90401-7. [DOI] [PubMed] [Google Scholar]
  25. Shih C. C., Stoye J. P., Coffin J. M. Highly preferred targets for retrovirus integration. Cell. 1988 May 20;53(4):531–537. doi: 10.1016/0092-8674(88)90569-7. [DOI] [PubMed] [Google Scholar]
  26. Skalka A. M. Retroviral DNA integration: lessons for transposon shuffling. Gene. 1993 Dec 15;135(1-2):175–182. doi: 10.1016/0378-1119(93)90063-9. [DOI] [PubMed] [Google Scholar]
  27. Vora A. C., McCord M., Fitzgerald M. L., Inman R. B., Grandgenett D. P. Efficient concerted integration of retrovirus-like DNA in vitro by avian myeloblastosis virus integrase. Nucleic Acids Res. 1994 Oct 25;22(21):4454–4461. doi: 10.1093/nar/22.21.4454. [DOI] [PMC free article] [PubMed] [Google Scholar]

Articles from Journal of Virology are provided here courtesy of American Society for Microbiology (ASM)

RESOURCES