Abstract
Perinatal human immunodeficiency virus type 1 (HIV-1) infections cause a broad spectrum of clinical disease and are variable in both the age of the patient at onset of serious disease and the progression of the clinical course. Heterozygotic perinatally infected twins with a marked difference in their clinical courses were monitored during the first 2 years of life. Twin B, the second-born twin, developed AIDS by 6 months of age and died at 22 months of age, while twin A remained minimally symptomatic through the first 2 years. Sequential blood specimens were obtained from the twins in order to characterize the immunologic properties of the children and the phenotypes and genotypes of the HIV-1 isolates at various times. Twin A developed neutralizing antibodies and a high-level antibody-mediated cellular cytotoxicity (ADCC) response, while twin B had no neutralizing antibody and a much lower ADCC response. The virus isolates obtained from the two children at various time points proliferated equally well in peripheral blood mononuclear cells, were nonsyncytium inducing, and could not infect established T-cell lines. They differed in their ability to infect primary macrophages. In parallel to the biological studies, the HIV-1 tat and part of the env gene sequences of the longitudinal isolates at four time points were determined. Sequences of virus from both twins at different time points were highly conserved; the viruses evolved at a similar rate until the last analyzed time point, at which there was a dramatic increase in sequence diversity for the sicker child, especially in the tat gene. Our results show that the viruses isolated at different times do not have significant changes in growth properties. The absence or low levels of neutralizing antibodies may correlate with disease progression in the twins.
Full Text
The Full Text of this article is available as a PDF (601.4 KB).
Selected References
These references are in PubMed. This may not be the complete list of references from this article.
- Blanche S., Mayaux M. J., Rouzioux C., Teglas J. P., Firtion G., Monpoux F., Ciraru-Vigneron N., Meier F., Tricoire J., Courpotin C. Relation of the course of HIV infection in children to the severity of the disease in their mothers at delivery. N Engl J Med. 1994 Feb 3;330(5):308–312. doi: 10.1056/NEJM199402033300502. [DOI] [PubMed] [Google Scholar]
- Blanche S., Tardieu M., Duliege A., Rouzioux C., Le Deist F., Fukunaga K., Caniglia M., Jacomet C., Messiah A., Griscelli C. Longitudinal study of 94 symptomatic infants with perinatally acquired human immunodeficiency virus infection. Evidence for a bimodal expression of clinical and biological symptoms. Am J Dis Child. 1990 Nov;144(11):1210–1215. doi: 10.1001/archpedi.1990.02150350042021. [DOI] [PubMed] [Google Scholar]
- Boyd M. T., Simpson G. R., Cann A. J., Johnson M. A., Weiss R. A. A single amino acid substitution in the V1 loop of human immunodeficiency virus type 1 gp120 alters cellular tropism. J Virol. 1993 Jun;67(6):3649–3652. doi: 10.1128/jvi.67.6.3649-3652.1993. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Broliden K., Sievers E., Tovo P. A., Moschese V., Scarlatti G., Broliden P. A., Fundaro C., Rossi P. Antibody-dependent cellular cytotoxicity and neutralizing activity in sera of HIV-1-infected mothers and their children. Clin Exp Immunol. 1993 Jul;93(1):56–64. doi: 10.1111/j.1365-2249.1993.tb06497.x. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Cheng-Mayer C., Shioda T., Levy J. A. Host range, replicative, and cytopathic properties of human immunodeficiency virus type 1 are determined by very few amino acid changes in tat and gp120. J Virol. 1991 Dec;65(12):6931–6941. doi: 10.1128/jvi.65.12.6931-6941.1991. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Cheng-Mayer C., Weiss C., Seto D., Levy J. A. Isolates of human immunodeficiency virus type 1 from the brain may constitute a special group of the AIDS virus. Proc Natl Acad Sci U S A. 1989 Nov;86(21):8575–8579. doi: 10.1073/pnas.86.21.8575. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Chesebro B., Wehrly K., Nishio J., Perryman S. Macrophage-tropic human immunodeficiency virus isolates from different patients exhibit unusual V3 envelope sequence homogeneity in comparison with T-cell-tropic isolates: definition of critical amino acids involved in cell tropism. J Virol. 1992 Nov;66(11):6547–6554. doi: 10.1128/jvi.66.11.6547-6554.1992. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Connor R. I., Ho D. D. Human immunodeficiency virus type 1 variants with increased replicative capacity develop during the asymptomatic stage before disease progression. J Virol. 1994 Jul;68(7):4400–4408. doi: 10.1128/jvi.68.7.4400-4408.1994. [DOI] [PMC free article] [PubMed] [Google Scholar]
- De Rossi A., Giaquinto C., Ometto L., Mammano F., Zanotto C., Dunn D., Chieco-Bianchi L. Replication and tropism of human immunodeficiency virus type 1 as predictors of disease outcome in infants with vertically acquired infection. J Pediatr. 1993 Dec;123(6):929–936. doi: 10.1016/s0022-3476(05)80389-0. [DOI] [PubMed] [Google Scholar]
- Delwart E. L., Sheppard H. W., Walker B. D., Goudsmit J., Mullins J. I. Human immunodeficiency virus type 1 evolution in vivo tracked by DNA heteroduplex mobility assays. J Virol. 1994 Oct;68(10):6672–6683. doi: 10.1128/jvi.68.10.6672-6683.1994. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Dickover R. E., Dillon M., Gillette S. G., Deveikis A., Keller M., Plaeger-Marshall S., Chen I., Diagne A., Stiehm E. R., Bryson Y. Rapid increases in load of human immunodeficiency virus correlate with early disease progression and loss of CD4 cells in vertically infected infants. J Infect Dis. 1994 Nov;170(5):1279–1284. doi: 10.1093/infdis/170.5.1279. [DOI] [PubMed] [Google Scholar]
- Fouchier R. A., Groenink M., Kootstra N. A., Tersmette M., Huisman H. G., Miedema F., Schuitemaker H. Phenotype-associated sequence variation in the third variable domain of the human immunodeficiency virus type 1 gp120 molecule. J Virol. 1992 May;66(5):3183–3187. doi: 10.1128/jvi.66.5.3183-3187.1992. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Freed E. O., Martin M. A. Evidence for a functional interaction between the V1/V2 and C4 domains of human immunodeficiency virus type 1 envelope glycoprotein gp120. J Virol. 1994 Apr;68(4):2503–2512. doi: 10.1128/jvi.68.4.2503-2512.1994. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Grimaila R. J., Fuller B. A., Rennert P. D., Nelson M. B., Hammarskjöld M. L., Potts B., Murray M., Putney S. D., Gray G. Mutations in the principal neutralization determinant of human immunodeficiency virus type 1 affect syncytium formation, virus infectivity, growth kinetics, and neutralization. J Virol. 1992 Apr;66(4):1875–1883. doi: 10.1128/jvi.66.4.1875-1883.1992. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Henrard D., Fauvel M., Samson J., Delage G., Boucher M., Hankins C., Stephens J., Lapointe N. Ontogeny of the humoral immune response to human immunodeficiency virus type 1 in infants. J Infect Dis. 1993 Aug;168(2):288–291. doi: 10.1093/infdis/168.2.288. [DOI] [PubMed] [Google Scholar]
- Hollinger F. B., Bremer J. W., Myers L. E., Gold J. W., McQuay L. Standardization of sensitive human immunodeficiency virus coculture procedures and establishment of a multicenter quality assurance program for the AIDS Clinical Trials Group. The NIH/NIAID/DAIDS/ACTG Virology Laboratories. J Clin Microbiol. 1992 Jul;30(7):1787–1794. doi: 10.1128/jcm.30.7.1787-1794.1992. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Holmes E. C., Zhang L. Q., Simmonds P., Ludlam C. A., Brown A. J. Convergent and divergent sequence evolution in the surface envelope glycoprotein of human immunodeficiency virus type 1 within a single infected patient. Proc Natl Acad Sci U S A. 1992 Jun 1;89(11):4835–4839. doi: 10.1073/pnas.89.11.4835. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Japour A. J., Fiscus S. A., Arduino J. M., Mayers D. L., Reichelderfer P. S., Kuritzkes D. R. Standardized microtiter assay for determination of syncytium-inducing phenotypes of clinical human immunodeficiency virus type 1 isolates. J Clin Microbiol. 1994 Sep;32(9):2291–2294. doi: 10.1128/jcm.32.9.2291-2294.1994. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Kasper P., Kaiser R., Kleim J. P., Oldenburg J., Brackmann H. H., Rockstroh J., Schneweis K. E. Diversification of HIV-1 strains after infection from a unique source. AIDS Res Hum Retroviruses. 1993 Feb;9(2):153–157. doi: 10.1089/aid.1993.9.153. [DOI] [PubMed] [Google Scholar]
- Kliks S. C., Wara D. W., Landers D. V., Levy J. A. Features of HIV-1 that could influence maternal-child transmission. JAMA. 1994 Aug 10;272(6):467–474. [PubMed] [Google Scholar]
- Korber B. T., Learn G., Mullins J. I., Hahn B. H., Wolinsky S. Protecting HIV databases. Nature. 1995 Nov 16;378(6554):242–244. doi: 10.1038/378242a0. [DOI] [PubMed] [Google Scholar]
- Lamers S. L., Sleasman J. W., She J. X., Barrie K. A., Pomeroy S. M., Barrett D. J., Goodenow M. M. Independent variation and positive selection in env V1 and V2 domains within maternal-infant strains of human immunodeficiency virus type 1 in vivo. J Virol. 1993 Jul;67(7):3951–3960. doi: 10.1128/jvi.67.7.3951-3960.1993. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Lamers S. L., Sleasman J. W., She J. X., Barrie K. A., Pomeroy S. M., Barrett D. J., Goodenow M. M. Persistence of multiple maternal genotypes of human immunodeficiency virus type I in infants infected by vertical transmission. J Clin Invest. 1994 Jan;93(1):380–390. doi: 10.1172/JCI116970. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Liu Z. Q., Wood C., Levy J. A., Cheng-Mayer C. The viral envelope gene is involved in macrophage tropism of a human immunodeficiency virus type 1 strain isolated from brain tissue. J Virol. 1990 Dec;64(12):6148–6153. doi: 10.1128/jvi.64.12.6148-6153.1990. [DOI] [PMC free article] [PubMed] [Google Scholar]
- McNearney T., Hornickova Z., Kloster B., Birdwell A., Storch G. A., Polmar S. H., Arens M., Ratner L. Evolution of sequence divergence among human immunodeficiency virus type 1 isolates derived from a blood donor and a recipient. Pediatr Res. 1993 Jan;33(1):36–42. doi: 10.1203/00006450-199301000-00008. [DOI] [PubMed] [Google Scholar]
- McNearney T., Hornickova Z., Markham R., Birdwell A., Arens M., Saah A., Ratner L. Relationship of human immunodeficiency virus type 1 sequence heterogeneity to stage of disease. Proc Natl Acad Sci U S A. 1992 Nov 1;89(21):10247–10251. doi: 10.1073/pnas.89.21.10247. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Mulder-Kampinga G. A., Kuiken C., Dekker J., Scherpbier H. J., Boer K., Goudsmit J. Genomic human immunodeficiency virus type 1 RNA variation in mother and child following intra-uterine virus transmission. J Gen Virol. 1993 Sep;74(Pt 9):1747–1756. doi: 10.1099/0022-1317-74-9-1747. [DOI] [PubMed] [Google Scholar]
- Pollack H., Zhan M. X., Ilmet-Moore T., Ajuang-Simbiri K., Krasinski K., Borkowsky W. Ontogeny of anti-human immunodeficiency virus (HIV) antibody production in HIV-1-infected infants. Proc Natl Acad Sci U S A. 1993 Mar 15;90(6):2340–2344. doi: 10.1073/pnas.90.6.2340. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Rogers M. F., Ou C. Y., Rayfield M., Thomas P. A., Schoenbaum E. E., Abrams E., Krasinski K., Selwyn P. A., Moore J., Kaul A. Use of the polymerase chain reaction for early detection of the proviral sequences of human immunodeficiency virus in infants born to seropositive mothers. New York City Collaborative Study of Maternal HIV Transmission and Montefiore Medical Center HIV Perinatal Transmission Study Group. N Engl J Med. 1989 Jun 22;320(25):1649–1654. doi: 10.1056/NEJM198906223202503. [DOI] [PubMed] [Google Scholar]
- Sanger F., Nicklen S., Coulson A. R. DNA sequencing with chain-terminating inhibitors. Proc Natl Acad Sci U S A. 1977 Dec;74(12):5463–5467. doi: 10.1073/pnas.74.12.5463. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Scarlatti G., Albert J., Rossi P., Hodara V., Biraghi P., Muggiasca L., Fenyö E. M. Mother-to-child transmission of human immunodeficiency virus type 1: correlation with neutralizing antibodies against primary isolates. J Infect Dis. 1993 Jul;168(1):207–210. doi: 10.1093/infdis/168.1.207. [DOI] [PubMed] [Google Scholar]
- Shioda T., Levy J. A., Cheng-Mayer C. Macrophage and T cell-line tropisms of HIV-1 are determined by specific regions of the envelope gp120 gene. Nature. 1991 Jan 10;349(6305):167–169. doi: 10.1038/349167a0. [DOI] [PubMed] [Google Scholar]
- Spencer L. T., Ogino M. T., Dankner W. M., Spector S. A. Clinical significance of human immunodeficiency virus type 1 phenotypes in infected children. J Infect Dis. 1994 Mar;169(3):491–495. doi: 10.1093/infdis/169.3.491. [DOI] [PubMed] [Google Scholar]
- Tersmette M., Lange J. M., de Goede R. E., de Wolf F., Eeftink-Schattenkerk J. K., Schellekens P. T., Coutinho R. A., Huisman J. G., Goudsmit J., Miedema F. Association between biological properties of human immunodeficiency virus variants and risk for AIDS and AIDS mortality. Lancet. 1989 May 6;1(8645):983–985. doi: 10.1016/s0140-6736(89)92628-7. [DOI] [PubMed] [Google Scholar]
- Tovo P. A., de Martino M., Gabiano C., Cappello N., D'Elia R., Loy A., Plebani A., Zuccotti G. V., Dallacasa P., Ferraris G. Prognostic factors and survival in children with perinatal HIV-1 infection. The Italian Register for HIV Infections in Children. Lancet. 1992 May 23;339(8804):1249–1253. doi: 10.1016/0140-6736(92)91592-v. [DOI] [PubMed] [Google Scholar]
- Westervelt P., Trowbridge D. B., Epstein L. G., Blumberg B. M., Li Y., Hahn B. H., Shaw G. M., Price R. W., Ratner L. Macrophage tropism determinants of human immunodeficiency virus type 1 in vivo. J Virol. 1992 Apr;66(4):2577–2582. doi: 10.1128/jvi.66.4.2577-2582.1992. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Wolinsky S. M., Wike C. M., Korber B. T., Hutto C., Parks W. P., Rosenblum L. L., Kunstman K. J., Furtado M. R., Muñoz J. L. Selective transmission of human immunodeficiency virus type-1 variants from mothers to infants. Science. 1992 Feb 28;255(5048):1134–1137. doi: 10.1126/science.1546316. [DOI] [PubMed] [Google Scholar]
- Zack J. A., Haislip A. M., Krogstad P., Chen I. S. Incompletely reverse-transcribed human immunodeficiency virus type 1 genomes in quiescent cells can function as intermediates in the retroviral life cycle. J Virol. 1992 Mar;66(3):1717–1725. doi: 10.1128/jvi.66.3.1717-1725.1992. [DOI] [PMC free article] [PubMed] [Google Scholar]