Skip to main content
Journal of Virology logoLink to Journal of Virology
. 1996 Jun;70(6):3763–3769. doi: 10.1128/jvi.70.6.3763-3769.1996

Second locus involved in human immunodeficiency virus type 1 resistance to protease inhibitors.

L Doyon 1, G Croteau 1, D Thibeault 1, F Poulin 1, L Pilote 1, D Lamarre 1
PMCID: PMC190252  PMID: 8648711

Abstract

Protease inhibitors are potent antiviral agents against human immunodeficiency virus type 1. As with reverse transcriptase inhibitors, however, resistance to protease inhibitors can develop and is attributed to the appearance of mutations in the protease gene. With the substrate analog protease inhibitors BILA 1906 BS and BILA 2185 BS, 350- to 1,500-fold-resistant variants have been selected in vitro and were found not only to contain mutations in the protease gene but also to contain mutations in Gag precursor p1/p6 and/or NC (p7)/p1 cleavage sites. Mutations in cleavage sites give rise to better peptide substrates for the protease in vitro and to improved processing of p15 precursors in drug-resistant clones. Importantly, removal of cleavage site mutations in resistant clones leads to a decrease or even an absence of viral growth, confirming their role in viral fitness. Therefore, these second-locus mutations indicate that cleavage of p15 is a rate-limiting step in polyprotein processing in highly resistant viruses. The functional constraint of p15 processing also suggests that additional selective pressure could further compromise viral fitness and maintain the benefits of antiviral therapies.

Full Text

The Full Text of this article is available as a PDF (392.3 KB).

Selected References

These references are in PubMed. This may not be the complete list of references from this article.

  1. Adachi A., Gendelman H. E., Koenig S., Folks T., Willey R., Rabson A., Martin M. A. Production of acquired immunodeficiency syndrome-associated retrovirus in human and nonhuman cells transfected with an infectious molecular clone. J Virol. 1986 Aug;59(2):284–291. doi: 10.1128/jvi.59.2.284-291.1986. [DOI] [PMC free article] [PubMed] [Google Scholar]
  2. Betageri R., Hopkins J. L., Thibeault D., Emmanuel M. J., Chow G. C., Skoog M. T., de Dreu P., Cohen K. A. Rapid, sensitive and efficient HPLC assays for HIV-1 proteinase. J Biochem Biophys Methods. 1993 Oct;27(3):191–197. doi: 10.1016/0165-022x(93)90003-7. [DOI] [PubMed] [Google Scholar]
  3. Candotti D., Chappey C., Rosenheim M., M'Pelé P., Huraux J. M., Agut H. High variability of the gag/pol transframe region among HIV-1 isolates. C R Acad Sci III. 1994 Feb;317(2):183–189. [PubMed] [Google Scholar]
  4. Condra J. H., Schleif W. A., Blahy O. M., Gabryelski L. J., Graham D. J., Quintero J. C., Rhodes A., Robbins H. L., Roth E., Shivaprakash M. In vivo emergence of HIV-1 variants resistant to multiple protease inhibitors. Nature. 1995 Apr 6;374(6522):569–571. doi: 10.1038/374569a0. [DOI] [PubMed] [Google Scholar]
  5. Darke P. L., Huff J. R. HIV protease as an inhibitor target for the treatment of AIDS. Adv Pharmacol. 1994;25:399–454. doi: 10.1016/s1054-3589(08)60438-x. [DOI] [PubMed] [Google Scholar]
  6. Darke P. L., Nutt R. F., Brady S. F., Garsky V. M., Ciccarone T. M., Leu C. T., Lumma P. K., Freidinger R. M., Veber D. F., Sigal I. S. HIV-1 protease specificity of peptide cleavage is sufficient for processing of gag and pol polyproteins. Biochem Biophys Res Commun. 1988 Oct 14;156(1):297–303. doi: 10.1016/s0006-291x(88)80839-8. [DOI] [PubMed] [Google Scholar]
  7. Graham F. L., van der Eb A. J. A new technique for the assay of infectivity of human adenovirus 5 DNA. Virology. 1973 Apr;52(2):456–467. doi: 10.1016/0042-6822(73)90341-3. [DOI] [PubMed] [Google Scholar]
  8. Higuchi R., Krummel B., Saiki R. K. A general method of in vitro preparation and specific mutagenesis of DNA fragments: study of protein and DNA interactions. Nucleic Acids Res. 1988 Aug 11;16(15):7351–7367. doi: 10.1093/nar/16.15.7351. [DOI] [PMC free article] [PubMed] [Google Scholar]
  9. Ho D. D., Neumann A. U., Perelson A. S., Chen W., Leonard J. M., Markowitz M. Rapid turnover of plasma virions and CD4 lymphocytes in HIV-1 infection. Nature. 1995 Jan 12;373(6510):123–126. doi: 10.1038/373123a0. [DOI] [PubMed] [Google Scholar]
  10. Ho D. D., Toyoshima T., Mo H., Kempf D. J., Norbeck D., Chen C. M., Wideburg N. E., Burt S. K., Erickson J. W., Singh M. K. Characterization of human immunodeficiency virus type 1 variants with increased resistance to a C2-symmetric protease inhibitor. J Virol. 1994 Mar;68(3):2016–2020. doi: 10.1128/jvi.68.3.2016-2020.1994. [DOI] [PMC free article] [PubMed] [Google Scholar]
  11. Jacks T., Power M. D., Masiarz F. R., Luciw P. A., Barr P. J., Varmus H. E. Characterization of ribosomal frameshifting in HIV-1 gag-pol expression. Nature. 1988 Jan 21;331(6153):280–283. doi: 10.1038/331280a0. [DOI] [PubMed] [Google Scholar]
  12. Kaplan A. H., Zack J. A., Knigge M., Paul D. A., Kempf D. J., Norbeck D. W., Swanstrom R. Partial inhibition of the human immunodeficiency virus type 1 protease results in aberrant virus assembly and the formation of noninfectious particles. J Virol. 1993 Jul;67(7):4050–4055. doi: 10.1128/jvi.67.7.4050-4055.1993. [DOI] [PMC free article] [PubMed] [Google Scholar]
  13. Kempf D. J., Marsh K. C., Denissen J. F., McDonald E., Vasavanonda S., Flentge C. A., Green B. E., Fino L., Park C. H., Kong X. P. ABT-538 is a potent inhibitor of human immunodeficiency virus protease and has high oral bioavailability in humans. Proc Natl Acad Sci U S A. 1995 Mar 28;92(7):2484–2488. doi: 10.1073/pnas.92.7.2484. [DOI] [PMC free article] [PubMed] [Google Scholar]
  14. Kohl N. E., Emini E. A., Schleif W. A., Davis L. J., Heimbach J. C., Dixon R. A., Scolnick E. M., Sigal I. S. Active human immunodeficiency virus protease is required for viral infectivity. Proc Natl Acad Sci U S A. 1988 Jul;85(13):4686–4690. doi: 10.1073/pnas.85.13.4686. [DOI] [PMC free article] [PubMed] [Google Scholar]
  15. Kuroda M. J., el-Farrash M. A., Choudhury S., Harada S. Impaired infectivity of HIV-1 after a single point mutation in the POL gene to escape the effect of a protease inhibitor in vitro. Virology. 1995 Jun 20;210(1):212–216. doi: 10.1006/viro.1995.1334. [DOI] [PubMed] [Google Scholar]
  16. Lin Y., Lin X., Hong L., Foundling S., Heinrikson R. L., Thaisrivongs S., Leelamanit W., Raterman D., Shah M., Dunn B. M. Effect of point mutations on the kinetics and the inhibition of human immunodeficiency virus type 1 protease: relationship to drug resistance. Biochemistry. 1995 Jan 31;34(4):1143–1152. doi: 10.1021/bi00004a007. [DOI] [PubMed] [Google Scholar]
  17. Mervis R. J., Ahmad N., Lillehoj E. P., Raum M. G., Salazar F. H., Chan H. W., Venkatesan S. The gag gene products of human immunodeficiency virus type 1: alignment within the gag open reading frame, identification of posttranslational modifications, and evidence for alternative gag precursors. J Virol. 1988 Nov;62(11):3993–4002. doi: 10.1128/jvi.62.11.3993-4002.1988. [DOI] [PMC free article] [PubMed] [Google Scholar]
  18. Moody M. D., Pettit S. C., Shao W., Everitt L., Loeb D. D., Hutchison C. A., 3rd, Swanstrom R. A side chain at position 48 of the human immunodeficiency virus type-1 protease flap provides an additional specificity determinant. Virology. 1995 Mar 10;207(2):475–485. doi: 10.1006/viro.1995.1107. [DOI] [PubMed] [Google Scholar]
  19. Pargellis C. A., Morelock M. M., Graham E. T., Kinkade P., Pav S., Lubbe K., Lamarre D., Anderson P. C. Determination of kinetic rate constants for the binding of inhibitors to HIV-1 protease and for the association and dissociation of active homodimer. Biochemistry. 1994 Oct 18;33(41):12527–12534. doi: 10.1021/bi00207a021. [DOI] [PubMed] [Google Scholar]
  20. Partaledis J. A., Yamaguchi K., Tisdale M., Blair E. E., Falcione C., Maschera B., Myers R. E., Pazhanisamy S., Futer O., Cullinan A. B. In vitro selection and characterization of human immunodeficiency virus type 1 (HIV-1) isolates with reduced sensitivity to hydroxyethylamino sulfonamide inhibitors of HIV-1 aspartyl protease. J Virol. 1995 Sep;69(9):5228–5235. doi: 10.1128/jvi.69.9.5228-5235.1995. [DOI] [PMC free article] [PubMed] [Google Scholar]
  21. Patick A. K., Rose R., Greytok J., Bechtold C. M., Hermsmeier M. A., Chen P. T., Barrish J. C., Zahler R., Colonno R. J., Lin P. F. Characterization of a human immunodeficiency virus type 1 variant with reduced sensitivity to an aminodiol protease inhibitor. J Virol. 1995 Apr;69(4):2148–2152. doi: 10.1128/jvi.69.4.2148-2152.1995. [DOI] [PMC free article] [PubMed] [Google Scholar]
  22. Peng C., Ho B. K., Chang T. W., Chang N. T. Role of human immunodeficiency virus type 1-specific protease in core protein maturation and viral infectivity. J Virol. 1989 Jun;63(6):2550–2556. doi: 10.1128/jvi.63.6.2550-2556.1989. [DOI] [PMC free article] [PubMed] [Google Scholar]
  23. Pettit S. C., Simsic J., Loeb D. D., Everitt L., Hutchison C. A., 3rd, Swanstrom R. Analysis of retroviral protease cleavage sites reveals two types of cleavage sites and the structural requirements of the P1 amino acid. J Biol Chem. 1991 Aug 5;266(22):14539–14547. [PubMed] [Google Scholar]
  24. Popovic M., Read-Connole E., Gallo R. C. T4 positive human neoplastic cell lines susceptible to and permissive for HTLV-III. Lancet. 1984 Dec 22;2(8417-8418):1472–1473. doi: 10.1016/s0140-6736(84)91666-0. [DOI] [PubMed] [Google Scholar]
  25. Popovic M., Sarngadharan M. G., Read E., Gallo R. C. Detection, isolation, and continuous production of cytopathic retroviruses (HTLV-III) from patients with AIDS and pre-AIDS. Science. 1984 May 4;224(4648):497–500. doi: 10.1126/science.6200935. [DOI] [PubMed] [Google Scholar]
  26. Preston B. D., Poiesz B. J., Loeb L. A. Fidelity of HIV-1 reverse transcriptase. Science. 1988 Nov 25;242(4882):1168–1171. doi: 10.1126/science.2460924. [DOI] [PubMed] [Google Scholar]
  27. Ratner L., Haseltine W., Patarca R., Livak K. J., Starcich B., Josephs S. F., Doran E. R., Rafalski J. A., Whitehorn E. A., Baumeister K. Complete nucleotide sequence of the AIDS virus, HTLV-III. Nature. 1985 Jan 24;313(6000):277–284. doi: 10.1038/313277a0. [DOI] [PubMed] [Google Scholar]
  28. Sardana V. V., Schlabach A. J., Graham P., Bush B. L., Condra J. H., Culberson J. C., Gotlib L., Graham D. J., Kohl N. E., LaFemina R. L. Human immunodeficiency virus type 1 protease inhibitors: evaluation of resistance engendered by amino acid substitutions in the enzyme's substrate binding site. Biochemistry. 1994 Mar 1;33(8):2004–2010. doi: 10.1021/bi00174a005. [DOI] [PubMed] [Google Scholar]
  29. Tong L., Pav S., Mui S., Lamarre D., Yoakim C., Beaulieu P., Anderson P. C. Crystal structures of HIV-2 protease in complex with inhibitors containing the hydroxyethylamine dipeptide isostere. Structure. 1995 Jan 15;3(1):33–40. doi: 10.1016/s0969-2126(01)00133-2. [DOI] [PubMed] [Google Scholar]
  30. Tözsér J., Bláha I., Copeland T. D., Wondrak E. M., Oroszlan S. Comparison of the HIV-1 and HIV-2 proteinases using oligopeptide substrates representing cleavage sites in Gag and Gag-Pol polyproteins. FEBS Lett. 1991 Apr 9;281(1-2):77–80. doi: 10.1016/0014-5793(91)80362-7. [DOI] [PubMed] [Google Scholar]
  31. Veronese F. D., Rahman R., Copeland T. D., Oroszlan S., Gallo R. C., Sarngadharan M. G. Immunological and chemical analysis of P6, the carboxyl-terminal fragment of HIV P15. AIDS Res Hum Retroviruses. 1987 Fall;3(3):253–264. doi: 10.1089/aid.1987.3.253. [DOI] [PubMed] [Google Scholar]
  32. Wei X., Ghosh S. K., Taylor M. E., Johnson V. A., Emini E. A., Deutsch P., Lifson J. D., Bonhoeffer S., Nowak M. A., Hahn B. H. Viral dynamics in human immunodeficiency virus type 1 infection. Nature. 1995 Jan 12;373(6510):117–122. doi: 10.1038/373117a0. [DOI] [PubMed] [Google Scholar]
  33. West M. L., Fairlie D. P. Targeting HIV-1 protease: a test of drug-design methodologies. Trends Pharmacol Sci. 1995 Feb;16(2):67–75. doi: 10.1016/s0165-6147(00)88980-4. [DOI] [PubMed] [Google Scholar]
  34. Wondrak E. M., Louis J. M., de Rocquigny H., Chermann J. C., Roques B. P. The gag precursor contains a specific HIV-1 protease cleavage site between the NC (P7) and P1 proteins. FEBS Lett. 1993 Oct 25;333(1-2):21–24. doi: 10.1016/0014-5793(93)80367-4. [DOI] [PubMed] [Google Scholar]

Articles from Journal of Virology are provided here courtesy of American Society for Microbiology (ASM)

RESOURCES