Skip to main content
Journal of Virology logoLink to Journal of Virology
. 1996 Jun;70(6):3797–3806. doi: 10.1128/jvi.70.6.3797-3806.1996

Crystal structure of the top domain of African horse sickness virus VP7: comparisons with bluetongue virus VP7.

A K Basak 1, P Gouet 1, J Grimes 1, P Roy 1, D Stuart 1
PMCID: PMC190256  PMID: 8648715

Abstract

The baculovirus-expressed core protein VP7 of African horse sickness virus serotype 4 (AHSV-4) has been purified to homogeneity and crystallized in the presence of 2.8 M urea. The X-ray structure has been solved to a 2.3-Angstroms (1 Angstrom = 0.1 nm) resolution with an Rfactor of 19.8%. The structure of AHSV VP7 reveals that during crystallization, the two-domain protein is cleaved and only the top domain remains. A similar problem was encountered previously with bluetongue virus (BTV) VP7 (whose structure has been reported), showing that the connections between the top and the bottom domains are rather weak for these two distinct orbiviruses. The top domains of both BTV and AHSV VP7 are trimeric and structurally very similar. The electron density maps show that they both possess an extra electron density feature along their molecular threefold axes, which is most likely due to an unidentified ion. The characteristics of the molecular surface of BTV and AHSV VP7 suggest why AHSV VP7 is much less soluble than BTV VP7 and indicate the possibility of attachment to the cell via attachment of an Arg-Gly-Asp (RGD) motif in the top domain of VP7 to a cellular integrin for both of these orbiviruses.

Full Text

The Full Text of this article is available as a PDF (1.3 MB).

Selected References

These references are in PubMed. This may not be the complete list of references from this article.

  1. Acharya R., Fry E., Stuart D., Fox G., Rowlands D., Brown F. The three-dimensional structure of foot-and-mouth disease virus at 2.9 A resolution. Nature. 1989 Feb 23;337(6209):709–716. doi: 10.1038/337709a0. [DOI] [PubMed] [Google Scholar]
  2. Bairoch A., Boeckmann B. The SWISS-PROT protein sequence data bank. Nucleic Acids Res. 1991 Apr 25;19 (Suppl):2247–2249. doi: 10.1093/nar/19.suppl.2247. [DOI] [PMC free article] [PubMed] [Google Scholar]
  3. Bairoch A. PROSITE: a dictionary of sites and patterns in proteins. Nucleic Acids Res. 1991 Apr 25;19 (Suppl):2241–2245. doi: 10.1093/nar/19.suppl.2241. [DOI] [PMC free article] [PubMed] [Google Scholar]
  4. Burroughs J. N., O'Hara R. S., Smale C. J., Hamblin C., Walton A., Armstrong R., Mertens P. P. Purification and properties of virus particles, infectious subviral particles, cores and VP7 crystals of African horsesickness virus serotype 9. J Gen Virol. 1994 Aug;75(Pt 8):1849–1857. doi: 10.1099/0022-1317-75-8-1849. [DOI] [PubMed] [Google Scholar]
  5. Chothia C., Lesk A. M. The relation between the divergence of sequence and structure in proteins. EMBO J. 1986 Apr;5(4):823–826. doi: 10.1002/j.1460-2075.1986.tb04288.x. [DOI] [PMC free article] [PubMed] [Google Scholar]
  6. Chuma T., Le Blois H., Sánchez-Vizcaíno J. M., Diaz-Laviada M., Roy P. Expression of the major core antigen VP7 of African horsesickness virus by a recombinant baculovirus and its use as a group-specific diagnostic reagent. J Gen Virol. 1992 Apr;73(Pt 4):925–931. doi: 10.1099/0022-1317-73-4-925. [DOI] [PubMed] [Google Scholar]
  7. Connolly M. L. Solvent-accessible surfaces of proteins and nucleic acids. Science. 1983 Aug 19;221(4612):709–713. doi: 10.1126/science.6879170. [DOI] [PubMed] [Google Scholar]
  8. Eaton B. T., Gould A. R., Hyatt A. D., Coupar B. E., Martyn J. C., White J. R. A bluetongue serogroup-reactive epitope in the amino terminal half of the major core protein VP7 is accessible on the surface of bluetongue virus particles. Virology. 1991 Feb;180(2):687–696. doi: 10.1016/0042-6822(91)90082-m. [DOI] [PubMed] [Google Scholar]
  9. Fox G., Parry N. R., Barnett P. V., McGinn B., Rowlands D. J., Brown F. The cell attachment site on foot-and-mouth disease virus includes the amino acid sequence RGD (arginine-glycine-aspartic acid). J Gen Virol. 1989 Mar;70(Pt 3):625–637. doi: 10.1099/0022-1317-70-3-625. [DOI] [PubMed] [Google Scholar]
  10. French T. J., Marshall J. J., Roy P. Assembly of double-shelled, viruslike particles of bluetongue virus by the simultaneous expression of four structural proteins. J Virol. 1990 Dec;64(12):5695–5700. doi: 10.1128/jvi.64.12.5695-5700.1990. [DOI] [PMC free article] [PubMed] [Google Scholar]
  11. French T. J., Roy P. Synthesis of bluetongue virus (BTV) corelike particles by a recombinant baculovirus expressing the two major structural core proteins of BTV. J Virol. 1990 Apr;64(4):1530–1536. doi: 10.1128/jvi.64.4.1530-1536.1990. [DOI] [PMC free article] [PubMed] [Google Scholar]
  12. Grimes J., Basak A. K., Roy P., Stuart D. The crystal structure of bluetongue virus VP7. Nature. 1995 Jan 12;373(6510):167–170. doi: 10.1038/373167a0. [DOI] [PubMed] [Google Scholar]
  13. Hutchinson E. G., Thornton J. M. HERA--a program to draw schematic diagrams of protein secondary structures. Proteins. 1990;8(3):203–212. doi: 10.1002/prot.340080303. [DOI] [PubMed] [Google Scholar]
  14. Iwata H., Chuma T., Roy P. Characterization of the genes encoding two of the major capsid proteins of epizootic haemorrhagic disease virus indicates a close genetic relationship to bluetongue virus. J Gen Virol. 1992 Apr;73(Pt 4):915–924. doi: 10.1099/0022-1317-73-4-915. [DOI] [PubMed] [Google Scholar]
  15. Jones E. Y., Harlos K., Bottomley M. J., Robinson R. C., Driscoll P. C., Edwards R. M., Clements J. M., Dudgeon T. J., Stuart D. I. Crystal structure of an integrin-binding fragment of vascular cell adhesion molecule-1 at 1.8 A resolution. Nature. 1995 Feb 9;373(6514):539–544. doi: 10.1038/373539a0. [DOI] [PubMed] [Google Scholar]
  16. Kabsch W., Sander C. Dictionary of protein secondary structure: pattern recognition of hydrogen-bonded and geometrical features. Biopolymers. 1983 Dec;22(12):2577–2637. doi: 10.1002/bip.360221211. [DOI] [PubMed] [Google Scholar]
  17. Kleywegt G. J., Jones T. A. Detection, delineation, measurement and display of cavities in macromolecular structures. Acta Crystallogr D Biol Crystallogr. 1994 Mar 1;50(Pt 2):178–185. doi: 10.1107/S0907444993011333. [DOI] [PubMed] [Google Scholar]
  18. Kyte J., Doolittle R. F. A simple method for displaying the hydropathic character of a protein. J Mol Biol. 1982 May 5;157(1):105–132. doi: 10.1016/0022-2836(82)90515-0. [DOI] [PubMed] [Google Scholar]
  19. Le Blois H., Roy P. A single point mutation in the VP7 major core protein of bluetongue virus prevents the formation of core-like particles. J Virol. 1993 Jan;67(1):353–359. doi: 10.1128/jvi.67.1.353-359.1993. [DOI] [PMC free article] [PubMed] [Google Scholar]
  20. Lee J. O., Rieu P., Arnaout M. A., Liddington R. Crystal structure of the A domain from the alpha subunit of integrin CR3 (CD11b/CD18). Cell. 1995 Feb 24;80(4):631–638. doi: 10.1016/0092-8674(95)90517-0. [DOI] [PubMed] [Google Scholar]
  21. Logan D., Abu-Ghazaleh R., Blakemore W., Curry S., Jackson T., King A., Lea S., Lewis R., Newman J., Parry N. Structure of a major immunogenic site on foot-and-mouth disease virus. Nature. 1993 Apr 8;362(6420):566–568. doi: 10.1038/362566a0. [DOI] [PubMed] [Google Scholar]
  22. Mason P. W., Rieder E., Baxt B. RGD sequence of foot-and-mouth disease virus is essential for infecting cells via the natural receptor but can be bypassed by an antibody-dependent enhancement pathway. Proc Natl Acad Sci U S A. 1994 Mar 1;91(5):1932–1936. doi: 10.1073/pnas.91.5.1932. [DOI] [PMC free article] [PubMed] [Google Scholar]
  23. Matthews B. W. Determination of protein molecular weight, hydration, and packing from crystal density. Methods Enzymol. 1985;114:176–187. doi: 10.1016/0076-6879(85)14018-8. [DOI] [PubMed] [Google Scholar]
  24. Mellor P. S. African horse sickness: transmission and epidemiology. Vet Res. 1993;24(2):199–212. [PubMed] [Google Scholar]
  25. Merritt E. A., Murphy M. E. Raster3D Version 2.0. A program for photorealistic molecular graphics. Acta Crystallogr D Biol Crystallogr. 1994 Nov 1;50(Pt 6):869–873. doi: 10.1107/S0907444994006396. [DOI] [PubMed] [Google Scholar]
  26. Murphy F. A., Borden E. C., Shope R. E., Harrison A. Physicochemical and morphological relationships of some arthropod-borne viruses to bluetongue virus--a new taxonomic group. Electron microscopic studies. J Gen Virol. 1971 Nov;13(2):273–288. doi: 10.1099/0022-1317-13-2-273. [DOI] [PubMed] [Google Scholar]
  27. O'Brien C. HIV integrase structure catalyzes drug search. Science. 1994 Dec 23;266(5193):1946–1946. doi: 10.1126/science.7801119. [DOI] [PubMed] [Google Scholar]
  28. Pierschbacher M. D., Ruoslahti E. Cell attachment activity of fibronectin can be duplicated by small synthetic fragments of the molecule. Nature. 1984 May 3;309(5963):30–33. doi: 10.1038/309030a0. [DOI] [PubMed] [Google Scholar]
  29. Prasad B. V., Yamaguchi S., Roy P. Three-dimensional structure of single-shelled bluetongue virus. J Virol. 1992 Apr;66(4):2135–2142. doi: 10.1128/jvi.66.4.2135-2142.1992. [DOI] [PMC free article] [PubMed] [Google Scholar]
  30. Rossmann M. G., Arnold E., Erickson J. W., Frankenberger E. A., Griffith J. P., Hecht H. J., Johnson J. E., Kamer G., Luo M., Mosser A. G. Structure of a human common cold virus and functional relationship to other picornaviruses. Nature. 1985 Sep 12;317(6033):145–153. doi: 10.1038/317145a0. [DOI] [PubMed] [Google Scholar]
  31. Roy P. Bluetongue virus proteins. J Gen Virol. 1992 Dec;73(Pt 12):3051–3064. doi: 10.1099/0022-1317-73-12-3051. [DOI] [PubMed] [Google Scholar]
  32. Roy P., Hirasawa T., Fernandez M., Blinov V. M., Sanchez-Vixcain Rodrique J. M. The complete sequence of the group-specific antigen, VP7, of African horsesickness disease virus serotype 4 reveals a close relationship to bluetongue virus. J Gen Virol. 1991 Jun;72(Pt 6):1237–1241. doi: 10.1099/0022-1317-72-6-1237. [DOI] [PubMed] [Google Scholar]
  33. Roy P., Marshall J. J., French T. J. Structure of the bluetongue virus genome and its encoded proteins. Curr Top Microbiol Immunol. 1990;162:43–87. doi: 10.1007/978-3-642-75247-6_3. [DOI] [PubMed] [Google Scholar]
  34. Ruoslahti E. Fibronectin and its receptors. Annu Rev Biochem. 1988;57:375–413. doi: 10.1146/annurev.bi.57.070188.002111. [DOI] [PubMed] [Google Scholar]
  35. Walsh J. Use of berkeley reactor questioned on military-related research. Science. 1987 Jan 2;235(4784):23–23. doi: 10.1126/science.235.4784.23. [DOI] [PubMed] [Google Scholar]
  36. Zlotnick A., Reddy V. S., Dasgupta R., Schneemann A., Ray W. J., Jr, Rueckert R. R., Johnson J. E. Capsid assembly in a family of animal viruses primes an autoproteolytic maturation that depends on a single aspartic acid residue. J Biol Chem. 1994 May 6;269(18):13680–13684. [PubMed] [Google Scholar]

Articles from Journal of Virology are provided here courtesy of American Society for Microbiology (ASM)

RESOURCES