Skip to main content
Journal of Virology logoLink to Journal of Virology
. 1996 Jun;70(6):4103–4109. doi: 10.1128/jvi.70.6.4103-4109.1996

N-acetyl-beta-glucosaminidase accounts for differences in glycosylation of influenza virus hemagglutinin expressed in insect cells from a baculovirus vector.

R Wagner 1, H Geyer 1, R Geyer 1, H D Klenk 1
PMCID: PMC190296  PMID: 8648750

Abstract

The hemagglutinin of fowl plague virus has been expressed in Spodoptera frugiperda (Sf9) cells and in Estigmene acrea cells by using a baculovirus vector. Structural analysis revealed that the endo-H-resistant N-glycans of HA from Sf9 cells were predominantly trimannosyl core oligosaccharides, whereas in E. acrea cells most of these cores were elongated by at least one terminal N-acetylglucosamine residue. To understand the difference in carbohydrate structures, enzymes involved in N-glycan processing have been analyzed. The results revealed that the different glycosylation patterns observed are due to an N-acetyl-beta-glucosaminidase activity that was found in Sf9 cells but not in E. acrea cells. This enzyme specifically used the GlcNAcMan(3)GlcNAc(2) oligosaccharide as a substrate. When N-acetyl-beta-glucosaminidase or alpha-mannosidase II was inhibited by specific inhibitors, the amount of terminal N-acetylglucosamine in hemagglutinin from Sf9 cells was significantly enhanced. These results demonstrate that N glycosylation in both cell lines follows the classical pathway up to the stage of GlcNAcMan(3)GlcNAc(2) oligosaccharide side chains. Whereas these structures are the end product in E. acrea cells, they are degraded in Sf9 cells to Man(3)GlcNAc(2) cores by N-acetyl-beta-glucosaminidase.

Full Text

The Full Text of this article is available as a PDF (511.4 KB).

Selected References

These references are in PubMed. This may not be the complete list of references from this article.

  1. Altmann F., Kornfeld G., Dalik T., Staudacher E., Glössl J. Processing of asparagine-linked oligosaccharides in insect cells. N-acetylglucosaminyltransferase I and II activities in cultured lepidopteran cells. Glycobiology. 1993 Dec;3(6):619–625. doi: 10.1093/glycob/3.6.619. [DOI] [PubMed] [Google Scholar]
  2. Altmann F., März L. Processing of asparagine-linked oligosaccharides in insect cells: evidence for alpha-mannosidase II. Glycoconj J. 1995 Apr;12(2):150–155. doi: 10.1007/BF00731359. [DOI] [PubMed] [Google Scholar]
  3. Altmann F., Schwihla H., Staudacher E., Glössl J., März L. Insect cells contain an unusual, membrane-bound beta-N-acetylglucosaminidase probably involved in the processing of protein N-glycans. J Biol Chem. 1995 Jul 21;270(29):17344–17349. doi: 10.1074/jbc.270.29.17344. [DOI] [PubMed] [Google Scholar]
  4. Conzelmann E., Sandhoff K. Glycolipid and glycoprotein degradation. Adv Enzymol Relat Areas Mol Biol. 1987;60:89–216. doi: 10.1002/9780470123065.ch3. [DOI] [PubMed] [Google Scholar]
  5. Davidson D. J., Castellino F. J. Asparagine-linked oligosaccharide processing in lepidopteran insect cells. Temporal dependence of the nature of the oligosaccharides assembled on asparagine-289 of recombinant human plasminogen produced in baculovirus vector infected Spodoptera frugiperda (IPLB-SF-21AE) cells. Biochemistry. 1991 Jun 25;30(25):6165–6174. doi: 10.1021/bi00239a013. [DOI] [PubMed] [Google Scholar]
  6. Davidson D. J., Fraser M. J., Castellino F. J. Oligosaccharide processing in the expression of human plasminogen cDNA by lepidopteran insect (Spodoptera frugiperda) cells. Biochemistry. 1990 Jun 12;29(23):5584–5590. doi: 10.1021/bi00475a024. [DOI] [PubMed] [Google Scholar]
  7. Geyer H., Will C., Feldmann H., Klenk H. D., Geyer R. Carbohydrate structure of Marburg virus glycoprotein. Glycobiology. 1992 Aug;2(4):299–312. doi: 10.1093/glycob/2.4.299. [DOI] [PMC free article] [PubMed] [Google Scholar]
  8. Geyer R., Geyer H. Isolation and fractionation of glycoprotein glycans in small amounts. Methods Mol Biol. 1993;14:131–142. doi: 10.1385/0-89603-226-4:131. [DOI] [PubMed] [Google Scholar]
  9. Granados R. R., Naughton M. Development of Amsacta moorei entomopoxvirus in ovarian and hemocyte cultures from Estigmene acrea larvae. Intervirology. 1975;5(1-2):62–68. doi: 10.1159/000149881. [DOI] [PubMed] [Google Scholar]
  10. Hallbrucker C., vom Dahl S., Lang F., Gerok W., Häussinger D. Inhibition of hepatic proteolysis by insulin. Role of hormone-induced alterations of the cellular K+ balance. Eur J Biochem. 1991 Jul 15;199(2):467–474. doi: 10.1111/j.1432-1033.1991.tb16145.x. [DOI] [PubMed] [Google Scholar]
  11. Harpaz N., Schachter H. Control of glycoprotein synthesis. Bovine colostrum UDP-N-acetylglucosamine:alpha-D-mannoside beta 2-N-acetylglucosaminyltransferase I. Separation from UDP-N-acetylglucosamine:alpha-D-mannoside beta 2-N-acetylglucosaminyltransferase II, partial purification, and substrate specificity. J Biol Chem. 1980 May 25;255(10):4885–4893. [PubMed] [Google Scholar]
  12. Harpaz N., Schachter H. Control of glycoprotein synthesis. Processing of asparagine-linked oligosaccharides by one or more rat liver Golgi alpha-D-mannosidases dependent on the prior action of UDP-N-acetylglucosamine: alpha-D-mannoside beta 2-N-acetylglucosaminyltransferase I. J Biol Chem. 1980 May 25;255(10):4894–4902. [PubMed] [Google Scholar]
  13. Hsieh P., Robbins P. W. Regulation of asparagine-linked oligosaccharide processing. Oligosaccharide processing in Aedes albopictus mosquito cells. J Biol Chem. 1984 Feb 25;259(4):2375–2382. [PubMed] [Google Scholar]
  14. Keil W., Geyer R., Dabrowski J., Dabrowski U., Niemann H., Stirm S., Klenk H. D. Carbohydrates of influenza virus. Structural elucidation of the individual glycans of the FPV hemagglutinin by two-dimensional 1H n.m.r. and methylation analysis. EMBO J. 1985 Oct;4(10):2711–2720. doi: 10.1002/j.1460-2075.1985.tb03991.x. [DOI] [PMC free article] [PubMed] [Google Scholar]
  15. Kobata A., Yamashita K., Takasaki S. BioGel P-4 column chromatography of oligosaccharides: effective size of oligosaccharides expressed in glucose units. Methods Enzymol. 1987;138:84–94. doi: 10.1016/0076-6879(87)38008-5. [DOI] [PubMed] [Google Scholar]
  16. Kornfeld R., Kornfeld S. Assembly of asparagine-linked oligosaccharides. Annu Rev Biochem. 1985;54:631–664. doi: 10.1146/annurev.bi.54.070185.003215. [DOI] [PubMed] [Google Scholar]
  17. Kubelka V., Altmann F., Kornfeld G., März L. Structures of the N-linked oligosaccharides of the membrane glycoproteins from three lepidopteran cell lines (Sf-21, IZD-Mb-0503, Bm-N). Arch Biochem Biophys. 1994 Jan;308(1):148–157. doi: 10.1006/abbi.1994.1021. [DOI] [PubMed] [Google Scholar]
  18. Kuroda K., Geyer H., Geyer R., Doerfler W., Klenk H. D. The oligosaccharides of influenza virus hemagglutinin expressed in insect cells by a baculovirus vector. Virology. 1990 Feb;174(2):418–429. doi: 10.1016/0042-6822(90)90095-9. [DOI] [PubMed] [Google Scholar]
  19. Kuroda K., Hauser C., Rott R., Klenk H. D., Doerfler W. Expression of the influenza virus haemagglutinin in insect cells by a baculovirus vector. EMBO J. 1986 Jun;5(6):1359–1365. doi: 10.1002/j.1460-2075.1986.tb04367.x. [DOI] [PMC free article] [PubMed] [Google Scholar]
  20. Lee Y. C. High-performance anion-exchange chromatography for carbohydrate analysis. Anal Biochem. 1990 Sep;189(2):151–162. doi: 10.1016/0003-2697(90)90099-u. [DOI] [PubMed] [Google Scholar]
  21. Legler G., Lüllau E., Kappes E., Kastenholz F. Bovine N-acetyl-beta-D-glucosaminidase: affinity purification and characterization of its active site with nitrogen containing analogs of N-acetylglucosamine. Biochim Biophys Acta. 1991 Oct 25;1080(2):89–95. doi: 10.1016/0167-4838(91)90133-k. [DOI] [PubMed] [Google Scholar]
  22. Naim H. Y., Koblet H. Asparagine-linked oligosaccharides of Semliki Forest virus grown in mosquito cells. Arch Virol. 1992;122(1-2):45–60. doi: 10.1007/BF01321117. [DOI] [PubMed] [Google Scholar]
  23. Parker G. F., Williams P. J., Butters T. D., Roberts D. B. Detection of the lipid-linked precursor oligosaccharide of N-linked protein glycosylation in Drosophila melanogaster. FEBS Lett. 1991 Sep 23;290(1-2):58–60. doi: 10.1016/0014-5793(91)81225-w. [DOI] [PubMed] [Google Scholar]
  24. Schachter H. Coordination between enzyme specificity and intracellular compartmentation in the control of protein-bound oligosaccharide biosynthesis. Biol Cell. 1984;51(2):133–145. doi: 10.1111/j.1768-322x.1984.tb00292.x. [DOI] [PubMed] [Google Scholar]
  25. Schachter H. The 'yellow brick road' to branched complex N-glycans. Glycobiology. 1991 Nov;1(5):453–461. doi: 10.1093/glycob/1.5.453. [DOI] [PubMed] [Google Scholar]
  26. Tulsiani D. R., Harris T. M., Touster O. Swainsonine inhibits the biosynthesis of complex glycoproteins by inhibition of Golgi mannosidase II. J Biol Chem. 1982 Jul 25;257(14):7936–7939. [PubMed] [Google Scholar]
  27. Velardo M. A., Bretthauer R. K., Boutaud A., Reinhold B., Reinhold V. N., Castellino F. J. The presence of UDP-N-acetylglucosamine:alpha-3-D-mannoside beta 1,2-N-acetylglucosaminyltransferase I activity in Spodoptera frugiperda cells (IPLB-SF-21AE) and its enhancement as a result of baculovirus infection. J Biol Chem. 1993 Aug 25;268(24):17902–17907. [PubMed] [Google Scholar]
  28. Yamashita K., Ohkura T., Yoshima H., Kobata A. Substrate specificity of Diplococcal beta-N-acetylhexosaminidase, a useful enzyme for the structural studies of complex type asparagine-linked sugar chains. Biochem Biophys Res Commun. 1981 May 15;100(1):226–232. doi: 10.1016/s0006-291x(81)80086-1. [DOI] [PubMed] [Google Scholar]

Articles from Journal of Virology are provided here courtesy of American Society for Microbiology (ASM)

RESOURCES