Abstract
We isolated two nondefective bovine rotavirus mutants (A5-10 and A5-16 clones) which have nonsense mutations in the early portion of the open reading frame of the NSP1 gene. In the NSP1 gene (1,587 bases long) of A5-10, a nonsense codon is present at nucleotides 153 to 155 just upstream of the coding region (nucleotides 156 to 230) of a cysteine-rich Zn finger motif. A5-16 gene 5 (1,087 bases long) was found to have a large deletion of 500 bases corresponding to nucleotides 142 to 641 of a parent A5-10 NSP1 gene and to have a nonsense codon at nucleotides 183 to 185, which resulted from the deletion. Expression of gene 5-specific NSP1 could not be detected in MA-104 cells infected with the A5-10 or A5-16 clone or in an in vitro translation system using the plasmids with gene 5 cDNA from A5-10 or A5-16. Nevertheless, both A5-10 and A5-16 replicated well in cultured cells, although the plaque size of A5-16 was extremely small.
Full Text
The Full Text of this article is available as a PDF (513.6 KB).
Selected References
These references are in PubMed. This may not be the complete list of references from this article.
- Ballard A., McCrae M. A., Desselberger U. Nucleotide sequences of normal and rearranged RNA segments 10 of human rotaviruses. J Gen Virol. 1992 Mar;73(Pt 3):633–638. doi: 10.1099/0022-1317-73-3-633. [DOI] [PubMed] [Google Scholar]
- Bremont M., Charpilienne A., Chabanne D., Cohen J. Nucleotide sequence and expression in Escherichia coli of the gene encoding the nonstructural protein NCVP2 of bovine rotavirus. Virology. 1987 Nov;161(1):138–144. doi: 10.1016/0042-6822(87)90179-6. [DOI] [PubMed] [Google Scholar]
- Brottier P., Nandi P., Bremont M., Cohen J. Bovine rotavirus segment 5 protein expressed in the baculovirus system interacts with zinc and RNA. J Gen Virol. 1992 Aug;73(Pt 8):1931–1938. doi: 10.1099/0022-1317-73-8-1931. [DOI] [PubMed] [Google Scholar]
- Dunn S. J., Cross T. L., Greenberg H. B. Comparison of the rotavirus nonstructural protein NSP1 (NS53) from different species by sequence analysis and northern blot hybridization. Virology. 1994 Aug 15;203(1):178–183. doi: 10.1006/viro.1994.1471. [DOI] [PubMed] [Google Scholar]
- Estes M. K., Cohen J. Rotavirus gene structure and function. Microbiol Rev. 1989 Dec;53(4):410–449. doi: 10.1128/mr.53.4.410-449.1989. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Estes M. K., Graham D. Y., Dimitrov D. H. The molecular epidemiology of rotavirus gastroenteritis. Prog Med Virol. 1984;29:1–22. [PubMed] [Google Scholar]
- Gorziglia M., Hoshino Y., Buckler-White A., Blumentals I., Glass R., Flores J., Kapikian A. Z., Chanock R. M. Conservation of amino acid sequence of VP8 and cleavage region of 84-kDa outer capsid protein among rotaviruses recovered from asymptomatic neonatal infection. Proc Natl Acad Sci U S A. 1986 Sep;83(18):7039–7043. doi: 10.1073/pnas.83.18.7039. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Gorziglia M., Nishikawa K., Fukuhara N. Evidence of duplication and deletion in super short segment 11 of rabbit rotavirus Alabama strain. Virology. 1989 Jun;170(2):587–590. doi: 10.1016/0042-6822(89)90453-4. [DOI] [PubMed] [Google Scholar]
- Hua J., Chen X., Patton J. T. Deletion mapping of the rotavirus metalloprotein NS53 (NSP1): the conserved cysteine-rich region is essential for virus-specific RNA binding. J Virol. 1994 Jun;68(6):3990–4000. doi: 10.1128/jvi.68.6.3990-4000.1994. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Hua J., Mansell E. A., Patton J. T. Comparative analysis of the rotavirus NS53 gene: conservation of basic and cysteine-rich regions in the protein and possible stem-loop structures in the RNA. Virology. 1993 Sep;196(1):372–378. doi: 10.1006/viro.1993.1492. [DOI] [PubMed] [Google Scholar]
- Hua J., Patton J. T. The carboxyl-half of the rotavirus nonstructural protein NS53 (NSP1) is not required for virus replication. Virology. 1994 Feb;198(2):567–576. doi: 10.1006/viro.1994.1068. [DOI] [PubMed] [Google Scholar]
- Hundley F., Biryahwaho B., Gow M., Desselberger U. Genome rearrangements of bovine rotavirus after serial passage at high multiplicity of infection. Virology. 1985 May;143(1):88–103. doi: 10.1016/0042-6822(85)90099-6. [DOI] [PubMed] [Google Scholar]
- Hundley F., McIntyre M., Clark B., Beards G., Wood D., Chrystie I., Desselberger U. Heterogeneity of genome rearrangements in rotaviruses isolated from a chronically infected immunodeficient child. J Virol. 1987 Nov;61(11):3365–3372. doi: 10.1128/jvi.61.11.3365-3372.1987. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Kojima K., Taniguchi K., Kobayashi N. Species-specific and interspecies relatedness of NSP1 sequences in human, porcine, bovine, feline, and equine rotavirus strains. Arch Virol. 1996;141(1):1–12. doi: 10.1007/BF01718584. [DOI] [PubMed] [Google Scholar]
- Matsui S. M., Mackow E. R., Matsuno S., Paul P. S., Greenberg H. B. Sequence analysis of gene 11 equivalents from "short" and "super short" strains of rotavirus. J Virol. 1990 Jan;64(1):120–124. doi: 10.1128/jvi.64.1.120-124.1990. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Mattion N. M., Cohen J., Aponte C., Estes M. K. Characterization of an oligomerization domain and RNA-binding properties on rotavirus nonstructural protein NS34. Virology. 1992 Sep;190(1):68–83. doi: 10.1016/0042-6822(92)91193-x. [DOI] [PubMed] [Google Scholar]
- Mattion N., González S. A., Burrone O., Bellinzoni R., La Torre J. L., Scodeller E. A. Rearrangement of genomic segment 11 in two swine rotavirus strains. J Gen Virol. 1988 Mar;69(Pt 3):695–698. doi: 10.1099/0022-1317-69-3-695. [DOI] [PubMed] [Google Scholar]
- Mitchell D. B., Both G. W. Conservation of a potential metal binding motif despite extensive sequence diversity in the rotavirus nonstructural protein NS53. Virology. 1990 Feb;174(2):618–621. doi: 10.1016/0042-6822(90)90117-a. [DOI] [PubMed] [Google Scholar]
- Poncet D., Aponte C., Cohen J. Rotavirus protein NSP3 (NS34) is bound to the 3' end consensus sequence of viral mRNAs in infected cells. J Virol. 1993 Jun;67(6):3159–3165. doi: 10.1128/jvi.67.6.3159-3165.1993. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Pongsuwanna Y., Taniguchi K., Choothanom M., Chiwakul M., Jayavasu C., Snodgrass D. R., Urasawa S. Serological and genetic characterization of bovine rotaviruses in Thailand by ELISA and RNA-RNA hybridization: detection of numerous non-serotype 6 strains. Southeast Asian J Trop Med Public Health. 1990 Dec;21(4):607–613. [PubMed] [Google Scholar]
- Pongsuwanna Y., Taniguchi K., Wakasugi F., Sutivijit Y., Chiwakul M., Warachit P., Jayavasu C., Urasawa S. Distinct yearly change of serotype distribution of human rotavirus in Thailand as determined by ELISA and PCR. Epidemiol Infect. 1993 Oct;111(2):407–412. doi: 10.1017/s0950268800057095. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Pongsuwanne Y., Taniguchi K., Choonthanom M., Chiwakul M., Susansook T., Saguanwongse S., Jayavasu C., Urasawa S. Subgroup and serotype distributions of human, bovine, and porcine rotavirus in Thailand. J Clin Microbiol. 1989 Sep;27(9):1956–1960. doi: 10.1128/jcm.27.9.1956-1960.1989. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Posnett D. N., Tam J. P. Multiple antigenic peptide method for producing antipeptide site-specific antibodies. Methods Enzymol. 1989;178:739–746. doi: 10.1016/0076-6879(89)78048-4. [DOI] [PubMed] [Google Scholar]
- Shen S., Burke B., Desselberger U. Rearrangement of the VP6 gene of a group A rotavirus in combination with a point mutation affecting trimer stability. J Virol. 1994 Mar;68(3):1682–1688. doi: 10.1128/jvi.68.3.1682-1688.1994. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Taniguchi K., Urasawa T., Pongsuwanna Y., Choonthanom M., Jayavasu C., Urasawa S. Molecular and antigenic analyses of serotypes 8 and 10 of bovine rotaviruses in Thailand. J Gen Virol. 1991 Dec;72(Pt 12):2929–2937. doi: 10.1099/0022-1317-72-12-2929. [DOI] [PubMed] [Google Scholar]
- Taniguchi K., Urasawa T., Urasawa S. Independent segregation of the VP4 and the VP7 genes in bovine rotaviruses as confirmed by VP4 sequence analysis of G8 and G10 bovine rotavirus strains. J Gen Virol. 1993 Jun;74(Pt 6):1215–1221. doi: 10.1099/0022-1317-74-6-1215. [DOI] [PubMed] [Google Scholar]
- Taniguchi K., Wakasugi F., Pongsuwanna Y., Urasawa T., Ukae S., Chiba S., Urasawa S. Identification of human and bovine rotavirus serotypes by polymerase chain reaction. Epidemiol Infect. 1992 Oct;109(2):303–312. doi: 10.1017/s0950268800050263. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Tian Y., Tarlow O., Ballard A., Desselberger U., McCrae M. A. Genomic concatemerization/deletion in rotaviruses: a new mechanism for generating rapid genetic change of potential epidemiological importance. J Virol. 1993 Nov;67(11):6625–6632. doi: 10.1128/jvi.67.11.6625-6632.1993. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Wu H., Taniguchi K., Wakasugi F., Ukae S., Chiba S., Ohseto M., Hasegawa A., Urasawa T., Urasawa S. Survey on the distribution of the gene 4 alleles of human rotaviruses by polymerase chain reaction. Epidemiol Infect. 1994 Jun;112(3):615–622. doi: 10.1017/s0950268800051311. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Xu L., Tian Y., Tarlow O., Harbour D., McCrae M. A. Molecular biology of rotaviruses. IX. Conservation and divergence in genome segment 5. J Gen Virol. 1994 Dec;75(Pt 12):3413–3421. doi: 10.1099/0022-1317-75-12-3413. [DOI] [PubMed] [Google Scholar]