Abstract
The in vitro susceptibility of Actinobacillus actinomycetemcomitans to azithromycin, a new macrolide antibiotic of a new class known as azalides, was compared with that of erythromycin by the agar dilution method on Mueller-Hinton Haemophilus test medium. Eighty-two A. actinomycetemcomitans strains, 79 recent clinical isolates obtained from 40 periodontally healthy or diseased subjects, and 3 type strains were included in the study. Erythromycin showed poor in vitro activity against A. actinomycetemcomitans. Azithromycin, however, was highly effective against A. actinomycetemcomitans: all strains were inhibited at 2.0 micrograms/ml. Azithromycin exhibited the best in vitro activity against the serotype a subpopulation of A. actinomycetemcomitans: 100% of the strains were inhibited at 1.0 micrograms/ml. The lowest MICs were, however, recorded by serotype b strains. Since azithromycin has favorable pharmacokinetic properties, including excellent distribution into tissues, it could be expected to pass into gingival crevicular fluid at levels sufficient to inhibit A. actinomycetemcomitans in vivo. Therefore, it is a good candidate for future clinical trials in A. actinomycetemcomitans-associated periodontitis.
Full text
PDFSelected References
These references are in PubMed. This may not be the complete list of references from this article.
- Aronoff S. C., Laurent C., Jacobs M. R. In-vitro activity of erythromycin, roxithromycin and CP 62993 against common paediatric pathogens. J Antimicrob Chemother. 1987 Feb;19(2):275–276. doi: 10.1093/jac/19.2.275. [DOI] [PubMed] [Google Scholar]
- Asikainen S., Jousimies-Somer H., Kanervo A., Saxén L. The immediate efficacy of adjunctive doxycycline in treatment of localized juvenile periodontitis. Arch Oral Biol. 1990;35 (Suppl):231S–234S. doi: 10.1016/0003-9969(90)90165-7. [DOI] [PubMed] [Google Scholar]
- Asikainen S., Lai C. H., Alaluusua S., Slots J. Distribution of Actinobacillus actinomycetemcomitans serotypes in periodontal health and disease. Oral Microbiol Immunol. 1991 Apr;6(2):115–118. doi: 10.1111/j.1399-302x.1991.tb00462.x. [DOI] [PubMed] [Google Scholar]
- Baker P. J., Evans R. T., Slots J., Genco R. J. Antibiotic susceptibility of anaerobic bacteria from the human oral cavity. J Dent Res. 1985 Oct;64(10):1233–1244. doi: 10.1177/00220345850640101201. [DOI] [PubMed] [Google Scholar]
- Barry A. L., Fuchs P. C. Influence of the test medium on azithromycin and erythromycin regression statistics. Eur J Clin Microbiol Infect Dis. 1991 Oct;10(10):846–849. doi: 10.1007/BF01975838. [DOI] [PubMed] [Google Scholar]
- Barry A. L., Fuchs P. C., Pfaller M. A. Susceptibility of Haemophilus influenzae to clarithromycin alone and in combination with its 14-hydroxy metabolite. Eur J Clin Microbiol Infect Dis. 1991 Dec;10(12):1080–1081. doi: 10.1007/BF01984936. [DOI] [PubMed] [Google Scholar]
- Barry A. L., Jones R. N. Interpretative criteria for the agar diffusion susceptibility test with azithromycin. J Antimicrob Chemother. 1988 Nov;22(5):637–641. doi: 10.1093/jac/22.5.637. [DOI] [PubMed] [Google Scholar]
- Barry A. L., Jones R. N., Thornsberry C. In vitro activities of azithromycin (CP 62,993), clarithromycin (A-56268; TE-031), erythromycin, roxithromycin, and clindamycin. Antimicrob Agents Chemother. 1988 May;32(5):752–754. doi: 10.1128/aac.32.5.752. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Bright G. M., Nagel A. A., Bordner J., Desai K. A., Dibrino J. N., Nowakowska J., Vincent L., Watrous R. M., Sciavolino F. C., English A. R. Synthesis, in vitro and in vivo activity of novel 9-deoxo-9a-AZA-9a-homoerythromycin A derivatives; a new class of macrolide antibiotics, the azalides. J Antibiot (Tokyo) 1988 Aug;41(8):1029–1047. doi: 10.7164/antibiotics.41.1029. [DOI] [PubMed] [Google Scholar]
- Foulds G., Shepard R. M., Johnson R. B. The pharmacokinetics of azithromycin in human serum and tissues. J Antimicrob Chemother. 1990 Jan;25 (Suppl A):73–82. doi: 10.1093/jac/25.suppl_a.73. [DOI] [PubMed] [Google Scholar]
- Girard A. E., Girard D., English A. R., Gootz T. D., Cimochowski C. R., Faiella J. A., Haskell S. L., Retsema J. A. Pharmacokinetic and in vivo studies with azithromycin (CP-62,993), a new macrolide with an extended half-life and excellent tissue distribution. Antimicrob Agents Chemother. 1987 Dec;31(12):1948–1954. doi: 10.1128/aac.31.12.1948. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Goldstein F. W., Emirian M. F., Coutrot A., Acar J. F. Bacteriostatic and bactericidal activity of azithromycin against Haemophilus influenzae. J Antimicrob Chemother. 1990 Jan;25 (Suppl A):25–28. doi: 10.1093/jac/25.suppl_a.25. [DOI] [PubMed] [Google Scholar]
- Hopkins S. Clinical toleration and safety of azithromycin. Am J Med. 1991 Sep 12;91(3A):40S–45S. doi: 10.1016/0002-9343(91)90401-i. [DOI] [PubMed] [Google Scholar]
- Jorgensen J. H., Howell A. W., Maher L. A. Antimicrobial susceptibility testing of less commonly isolated Haemophilus species using Haemophilus test medium. J Clin Microbiol. 1990 May;28(5):985–988. doi: 10.1128/jcm.28.5.985-988.1990. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Jorgensen J. H., Maher L. A., Howell A. W. Activity of clarithromycin and its principal human metabolite against Haemophilus influenzae. Antimicrob Agents Chemother. 1991 Jul;35(7):1524–1526. doi: 10.1128/aac.35.7.1524. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Jousimies-Somer H., Asikainen S., Suomala P., Summanen P. Activity of metronidazole and its hydroxy metabolite against clinical isolates of Actinobacillus actinomycetemcomitans. Oral Microbiol Immunol. 1988 Mar;3(1):32–34. doi: 10.1111/j.1399-302x.1988.tb00602.x. [DOI] [PubMed] [Google Scholar]
- Kirst H. A., Sides G. D. New directions for macrolide antibiotics: pharmacokinetics and clinical efficacy. Antimicrob Agents Chemother. 1989 Sep;33(9):1419–1422. doi: 10.1128/aac.33.9.1419. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Kirst H. A., Sides G. D. New directions for macrolide antibiotics: structural modifications and in vitro activity. Antimicrob Agents Chemother. 1989 Sep;33(9):1413–1418. doi: 10.1128/aac.33.9.1413. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Kitzis M. D., Goldstein F. W., Miégi M., Acar J. F. In-vitro activity of azithromycin against various Gram-negative bacilli and anaerobic bacteria. J Antimicrob Chemother. 1990 Jan;25 (Suppl A):15–18. doi: 10.1093/jac/25.suppl_a.15. [DOI] [PubMed] [Google Scholar]
- Loesche W. J., Schmidt E., Smith B. A., Morrison E. C., Caffesse R., Hujoel P. P. Effects of metronidazole on periodontal treatment needs. J Periodontol. 1991 Apr;62(4):247–257. doi: 10.1902/jop.1991.62.4.247. [DOI] [PubMed] [Google Scholar]
- Mandell R. L., Tripodi L. S., Savitt E., Goodson J. M., Socransky S. S. The effect of treatment on Actinobacillus actinomycetemcomitans in localized juvenile periodontitis. J Periodontol. 1986 Feb;57(2):94–99. doi: 10.1902/jop.1986.57.2.94. [DOI] [PubMed] [Google Scholar]
- Neu H. C. Clinical microbiology of azithromycin. Am J Med. 1991 Sep 12;91(3A):12S–18S. doi: 10.1016/0002-9343(91)90395-e. [DOI] [PubMed] [Google Scholar]
- Pavicić M. J., van Winkelhoff A. J., de Graaff J. Synergistic effects between amoxicillin, metronidazole, and the hydroxymetabolite of metronidazole against Actinobacillus actinomycetemcomitans. Antimicrob Agents Chemother. 1991 May;35(5):961–966. doi: 10.1128/aac.35.5.961. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Retsema J., Girard A., Schelkly W., Manousos M., Anderson M., Bright G., Borovoy R., Brennan L., Mason R. Spectrum and mode of action of azithromycin (CP-62,993), a new 15-membered-ring macrolide with improved potency against gram-negative organisms. Antimicrob Agents Chemother. 1987 Dec;31(12):1939–1947. doi: 10.1128/aac.31.12.1939. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Saxén L., Asikainen S., Kanervo A., Kari K., Jousimies-Somer H. The long-term efficacy of systemic doxycycline medication in the treatment of localized juvenile periodontitis. Arch Oral Biol. 1990;35 (Suppl):227S–229S. doi: 10.1016/0003-9969(90)90164-6. [DOI] [PubMed] [Google Scholar]
- Schentag J. J., Ballow C. H. Tissue-directed pharmacokinetics. Am J Med. 1991 Sep 12;91(3A):5S–11S. doi: 10.1016/0002-9343(91)90394-d. [DOI] [PubMed] [Google Scholar]
- Slots J., Evans R. T., Lobbins P. M., Genco R. J. In vitro antimicrobial susceptibility of Actinobacillus actinomycetemcomitans. Antimicrob Agents Chemother. 1980 Jul;18(1):9–12. doi: 10.1128/aac.18.1.9. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Slots J., Rosling B. G. Suppression of the periodontopathic microflora in localized juvenile periodontitis by systemic tetracycline. J Clin Periodontol. 1983 Sep;10(5):465–486. doi: 10.1111/j.1600-051x.1983.tb02179.x. [DOI] [PubMed] [Google Scholar]
- Slots J. Selective medium for isolation of Actinobacillus actinomycetemcomitans. J Clin Microbiol. 1982 Apr;15(4):606–609. doi: 10.1128/jcm.15.4.606-609.1982. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Walker C. B., Tyler K. Z., Low S. B., King C. J. Penicillin-degrading enzymes in sites associated with adult periodontitis. Oral Microbiol Immunol. 1987 Sep;2(3):129–131. doi: 10.1111/j.1399-302x.1987.tb00276.x. [DOI] [PubMed] [Google Scholar]
- Zambon J. J. Actinobacillus actinomycetemcomitans in human periodontal disease. J Clin Periodontol. 1985 Jan;12(1):1–20. doi: 10.1111/j.1600-051x.1985.tb01348.x. [DOI] [PubMed] [Google Scholar]