Skip to main content
The American Journal of Pathology logoLink to The American Journal of Pathology
. 1980 Apr;99(1):125–142.

Fine structural lesions and hormonal alterations in thyroid glands of perinatal rats exposed in utero and by the milk to polychlorinated biphenyls.

W T Collins Jr, C C Capen
PMCID: PMC1903475  PMID: 6767410

Abstract

Polychlorinated biphenyls (PCB) produced ultrastructural lesions of thyroid follicular cells and a reduction in serum levels of thyroid hormones in neonatal (0, 7, 14, and 21 days of age) Osborne-Mendel rats exposed to 50 or 500 ppm PCB in utero and by the milk. Litter size was decreased significantly in rats fed 500 ppm PCB. Body weights at 21 days of age were reduced in rats exposed to 50 and 500 ppm PCB. The ultrastructural lesions in follicular cells were dose- and age-dependent but were less extensive than in adult rats of the same strain. At all ages the lesions in thyroid follicular cells were characterized by increased development of rough endoplasmic reticulum and vacuolization of mitochondria. There was an increase of colloid droplets and lysosomes in the older age groups (14 and 21 days) but little evidence for colloid droplet-lysosome interaction necessary for the secretion of thyroid hormones. Shortening of microvilli, with the formation of club-shaped or branching forms, was observed only in 21-day-old rat pups. These ultrastructural alterations in follicular cells exposed to PCB were associated with a significant reduction in serum thyroxine in the rats at birth and at 7, 14, and 21 days of age. Serum triiodothyronine was reduced significantly in 7- and 14-day-old rat pups. The ultrastructural alterations in follicular cells appeared to contribute to the significant lowering of serum thyroid hormone levels in 14- and 21-day-old rats exposed to PCB. These findings suggest that alterations in thyroid structure and function may be important in the pathogenesis of certain metabolic disorders associated with PCB intoxication.

Full text

PDF
125

Images in this article

Selected References

These references are in PubMed. This may not be the complete list of references from this article.

  1. Acker L., Schulte E. Uber das Vorkommen von chlorierten Biphenylen und Hexachlorbenzol neben chlorierten Insektiziden in Humanmilch und menschlichem Fettgewebe. Naturwissenschaften. 1970 Oct;57(10):497–497. doi: 10.1007/BF00593085. [DOI] [PubMed] [Google Scholar]
  2. Allen J. R., Carstens L. A., Barsotti D. A. Residual effects of short-term, low-level exposure of nonhuman primates to polychlorinated biphenyls. Toxicol Appl Pharmacol. 1974 Dec;30(3):440–451. doi: 10.1016/0041-008x(74)90265-8. [DOI] [PubMed] [Google Scholar]
  3. Ax R. L., Hansen L. G. Effects of purified polychlorinated biphenyl analogs on chicken reproduction. Poult Sci. 1975 May;54(3):895–900. doi: 10.3382/ps.0540895. [DOI] [PubMed] [Google Scholar]
  4. Bakke J. L., Lawrence N. L., Robinson S., Bennett J. Lifelong alterations in endocrine function resulting from brief perinatal hypothyroidism in the rat. J Lab Clin Med. 1976 Jul;88(1):3–13. [PubMed] [Google Scholar]
  5. Bastomsky C. H. Effects of a polychlorinated biphenyl mixture (aroclor 1254) and DDT on biliary thyroxine excretion in rats. Endocrinology. 1974 Oct;95(4):1150–1155. doi: 10.1210/endo-95-4-1150. [DOI] [PubMed] [Google Scholar]
  6. Bastomsky C. H., Murthy P. V., Banovac K. Alterations in thyroxine metabolism produced by cutaneous application of microscope immersion oil: effects due to polychlorinated biphenyls. Endocrinology. 1976 May;98(5):1309–1314. doi: 10.1210/endo-98-5-1309. [DOI] [PubMed] [Google Scholar]
  7. Bastomsky C. H., Murthy P. V. Enchanced in vitro hepatic glucuronidation of thyroxine in rats following cutaneous application or ingestion of polychlorinated biphenyls. Can J Physiol Pharmacol. 1976 Feb;54(1):23–26. doi: 10.1139/y76-004. [DOI] [PubMed] [Google Scholar]
  8. Bastomsky C. H., Wyse J. M. Enhanced thyroxine metabolism following cutaneous application of microscope immersion oil. Res Commun Chem Pathol Pharmacol. 1975 Apr;10(4):725–733. [PubMed] [Google Scholar]
  9. Basu T. K., Dickerson J. W., Parke D. V. Effect of development on the activity of microsomal drug-metabolizing enzymes in rat liver. Biochem J. 1971 Aug;124(1):19–24. doi: 10.1042/bj1240019. [DOI] [PMC free article] [PubMed] [Google Scholar]
  10. Bell J. U., Hansell M. M., Ecobichon D. J. The influence of DDT on the ontogenesis of drug-metabolizing enzymes in the perinatal rat. Toxicol Appl Pharmacol. 1976 Jan;35(1):165–177. doi: 10.1016/0041-008x(76)90122-8. [DOI] [PubMed] [Google Scholar]
  11. Collins W. T., Jr, Capen C. C., Kasza L., Carter C., Dailey R. E. Effect of polychlorinated biphenyl (PCB) on the thyroid gland of rats. Ultrastructural and biochemical investigations. Am J Pathol. 1977 Oct;89(1):119–136. [PMC free article] [PubMed] [Google Scholar]
  12. Cornelius C. E., Arias I. M. Animal model of human disease. Crigler-Najjar Syndrome. Animal model: hereditary nonhemolytic unconjugated hyperbilirubinemia in Gunn rats. Am J Pathol. 1972 Nov;69(2):369–372. [PMC free article] [PubMed] [Google Scholar]
  13. Finklea J., Priester L. E., Creason J. P., Hauser T., Hinners T., Hammer D. I. Polychlorinated biphenyl residues in human plasma expose a major urban pollution problem. Am J Public Health. 1972 May;62(5):645–651. doi: 10.2105/ajph.62.5.645. [DOI] [PMC free article] [PubMed] [Google Scholar]
  14. Grant D. L., Moodie C. A., Phillips W. E. Toxicodynamics of aroclor 1254 in the male rat. Environ Physiol Biochem. 1974;4(5):214–225. [PubMed] [Google Scholar]
  15. Hammond A. L. Chemical pollution: polychlorinated biphenyls. Science. 1972 Jan 14;175(4018):155–156. doi: 10.1126/science.175.4018.155. [DOI] [PubMed] [Google Scholar]
  16. Hansen L. G., Byerly C. S., Metcalf R. L., Bevill R. F. Effect of a polychlorinated biphenyl mixture on swine reproduction and tissue residues. Am J Vet Res. 1975 Jan;36(1):23–26. [PubMed] [Google Scholar]
  17. Hansen L. G., Wilson D. W., Byerly C. S. Effects on growing swine and sheep of two polychlorinated biphenyls. Am J Vet Res. 1976 Sep;37(9):1021–1024. [PubMed] [Google Scholar]
  18. Harris J. R., Rose L. Toxicity of polychlorinated biphenyls in poultry. J Am Vet Med Assoc. 1972 Dec 1;161(11):1584–1586. [PubMed] [Google Scholar]
  19. Kasza L., Collins W. T., Capen C. C., Garthoff L. H., Friedman L. Comparative toxicity of polychlorinated biphenyl and polybrominated biphenylin the rat thyroid gland: light and electron microscopic alterations after subacute dietary exposure. J Environ Pathol Toxicol. 1978 May-Jun;1(5):587–599. [PubMed] [Google Scholar]
  20. Kasza L., Weinberger M. A., Carter C., Hinton D. E., Trump B. F., Brouwer E. A. Acute, subacute, and residual effects of polychlorinated biphenyl (pcb) in rats. II. Pathology and electron microscopy of liver and serum enzyme study. J Toxicol Environ Health. 1976 May;1(5):689–703. doi: 10.1080/15287397609529369. [DOI] [PubMed] [Google Scholar]
  21. Kimbrough R. D., Linder R. E., Gaines T. B. Morphological changes in livers of rats fed polychlorinated biphenyls: light microscopy and ultrastructure. Arch Environ Health. 1972 Nov;25(5):354–364. doi: 10.1080/00039896.1972.10666186. [DOI] [PubMed] [Google Scholar]
  22. Kimbrough R. D. The toxicity of polychlorinated polycyclic compounds and related chemicals. CRC Crit Rev Toxicol. 1974 Jan;2(4):445–498. doi: 10.3109/10408447309025705. [DOI] [PubMed] [Google Scholar]
  23. Kolbye A. C. Food exposures to polychlorinated biphenyls. Environ Health Perspect. 1972 Apr;1:85–88. doi: 10.1289/ehp.720185. [DOI] [PMC free article] [PubMed] [Google Scholar]
  24. MacLeod S. M., Renton K. W., Eade N. R. Development of hepatic microsomal drug-oxidizing enzymes in immature male and female rats. J Pharmacol Exp Ther. 1972 Dec;183(3):489–498. [PubMed] [Google Scholar]
  25. Platonow N. S., Saschenbrecker P. W., Funnell H. S. Residues of polychlorinated biphenyls in cattle. Can Vet J. 1971 May;12(5):115–118. [PMC free article] [PubMed] [Google Scholar]
  26. Price N. O., Young R. W., Dickinson J. K., Bunce G. E. Pesticide residues and polychlorinated biphenyl levels in diets, urine, and fecal matter of preadolescent girls. Proc Soc Exp Biol Med. 1972 Apr;139(4):1280–1283. doi: 10.3181/00379727-139-36347. [DOI] [PubMed] [Google Scholar]
  27. Varma S. K., Murray R., Stanbury J. B. Effect of maternal hypothyroidism and triiodothyronine on the fetus and newborn in rats. Endocrinology. 1978 Jan;102(1):24–30. doi: 10.1210/endo-102-1-24. [DOI] [PubMed] [Google Scholar]
  28. Villeneuve D. C., Grant D. L., Phillips W. E., Clark M. L., Clegg D. J. Effects of PCB administration on microsomal enzyme activity in pregnant rabbits. Bull Environ Contam Toxicol. 1971 Mar-Apr;6(2):120–128. doi: 10.1007/BF01540092. [DOI] [PubMed] [Google Scholar]
  29. Vos J. G., Beems R. B. Dermal toxicity studies of technical polychlorinated biphenyls and fractions thereof in rabbits. Toxicol Appl Pharmacol. 1971 Aug;19(4):617–633. doi: 10.1016/0041-008x(71)90294-8. [DOI] [PubMed] [Google Scholar]
  30. Vos J. G., Koeman J. H. Comparative toxicologic study with polychlorinated biphenyls in chickens with special reference to porphyria, edema formation, liver necrosis, and tissue residues. Toxicol Appl Pharmacol. 1970 Nov;17(3):656–668. doi: 10.1016/0041-008x(70)90040-2. [DOI] [PubMed] [Google Scholar]

Articles from The American Journal of Pathology are provided here courtesy of American Society for Investigative Pathology

RESOURCES