Skip to main content
The American Journal of Pathology logoLink to The American Journal of Pathology
. 1980 Sep;100(3):739–764.

Allylamine Cardiotoxicity

II. Histopathology and Histochemistry

Paul J Boor, Thomas J Nelson, Pasquale Chieco
PMCID: PMC1903563  PMID: 6448005

Abstract

The progression of cardiac lesions induced in the rat by allylamine administration (0.1% in drinking water) was studied histopathologically and histochemically. Early changes (4-8 days) consisted of piecemeal acute apical and subendocardial myocardial necrosis with morphologic features of coagulation necrosis and myocytolysis. These early lesions progressed and coalesced; resolution of the subendocardial necrosis was associated with remarkably proliferative fibroblastic tissus. Late lesions (21 days to 3 months) consisted of extensive dense fibrous tissue with adjacent continuing focal necrosis and organization. Although vascular alterations were not present during the early course of injury, after 21 days an exuberant proliferation of cells, predominantly within the intima of intramyocardial smaller arteries and not associated with total occlusion or thrombosis, became evident. Other late lesions included rare intraventricular mural thrombi and cartilagenous metaplasia of trabeculae carnae. Early histochemical alterations (3 days) included focal myocardial cell “calcification,” demonstrated by the alizarin red S stain, and increased monoamine oxidase (MAO) staining in apical subendocardium and periarterial myocytes. As necrosis continued and fibrosis developed (7-21 days) MAO dramatically increased in pericicatricial and periarterial cells. Biochemical measurement of myocardial MAO showed an initial drop in activity, followed by a steady rise to high activity (21 days), especially toward a Type “B” MAO substrate. Although there are many similarities between allylamine-induced myocardial necrosis and ischemic or catecholamine-induced myocardial damage, other unusual findings—especially the early histochemical and chemical MAO alterations and the proliferative late vascular and cicatricial lesions—suggest that the primary pathophysiologic effect of allylamine, mediated through the MAO system, is on the medial smooth muscle of intramyocardial arteries.

Full text

PDF
739

Images in this article

Selected References

These references are in PubMed. This may not be the complete list of references from this article.

  1. BLOOR C. M., LOWMAN R. M. EXPERIMENTAL CORONARY ARTERIOGRAPHY. I. THE DISTRIBUTION AND EXTENT OF ALLYLAMINE-INDUCED VASCULAR LESIONS IN THE DOG. Radiology. 1963 Nov;81:770–777. doi: 10.1148/81.5.770. [DOI] [PubMed] [Google Scholar]
  2. Baroldi G. Different types of myocardial necrosis in coronary heart disease: a pathophysiologic review of their functional significance. Am Heart J. 1975 Jun;89(6):742–752. doi: 10.1016/0002-8703(75)90189-1. [DOI] [PubMed] [Google Scholar]
  3. Boor P. J., Moslen M. T., Reynolds E. S. Allylamine cardiotoxicity: I. Sequence of pathologic events. Toxicol Appl Pharmacol. 1979 Sep 30;50(3):581–592. doi: 10.1016/0041-008x(79)90413-7. [DOI] [PubMed] [Google Scholar]
  4. Bouchardy B., Majno G. Histopathology of early myocardial infarcts. A new approach. Am J Pathol. 1974 Feb;74(2):301–330. [PMC free article] [PubMed] [Google Scholar]
  5. CONRAD L. L., GONZALEZ I. E., JOEL W., FURMAN R. H. Histochemical evaluation of canine coronary artery and aortic lesions induced by intravenous allylamine. Circ Res. 1956 May;4(3):263–267. doi: 10.1161/01.res.4.3.263. [DOI] [PubMed] [Google Scholar]
  6. Carlson E. L., Cant J. R., Sparks H. V. Coronary blood flow of unanaesthetized dogs with experimental coronary artery disease. Cardiovasc Res. 1973 Nov;7(6):789–797. doi: 10.1093/cvr/7.6.789. [DOI] [PubMed] [Google Scholar]
  7. Constantinides P., Robinson M. Ultrastructural injury of arterial endothelium. 1. Effects of pH, osmolarity, anoxia, and temperature. Arch Pathol. 1969 Aug;88(2):99–105. [PubMed] [Google Scholar]
  8. DONOMAE I., MATSUMOTO Y., KOKUBU T., KOIDE R. Production of coronary heart disease in the rabbit by lanolin feeding. Circ Res. 1957 Nov;5(6):645–649. doi: 10.1161/01.res.5.6.645. [DOI] [PubMed] [Google Scholar]
  9. FERRANS V. J., HIBBS R. G., BLACK W. C., WEILBAECHER D. G. ISOPROTERENOL-INDUCED MYOCARDIAL NECROSIS. A HISTOCHEMICAL AND ELECTRON MICROSCOPIC STUDY. Am Heart J. 1964 Jul;68:71–90. doi: 10.1016/0002-8703(64)90242-x. [DOI] [PubMed] [Google Scholar]
  10. Fishbein M. C., Maclean D., Maroko P. R. Experimental myocardial infarction in the rat: qualitative and quantitative changes during pathologic evolution. Am J Pathol. 1978 Jan;90(1):57–70. [PMC free article] [PubMed] [Google Scholar]
  11. Fuentes J. A., Neff N. H. Inhibition by pargyline of cardiovascular amine oxidase activity. Biochem Pharmacol. 1977 Nov 15;26(22):2107–2112. doi: 10.1016/0006-2952(77)90259-3. [DOI] [PubMed] [Google Scholar]
  12. GLENNER G. G., BURTNER H. J., BROWN G. W., Jr The histochemical demonstration of monoamine oxidase activity by tetrazolium salts. J Histochem Cytochem. 1957 Nov;5(6):591–600. doi: 10.1177/5.6.591. [DOI] [PubMed] [Google Scholar]
  13. GUZMAN R. J., LOQUVAM G. S., KODAMA J. K., HINE C. H. Myocarditis produced by allylamines. Experimental. Arch Environ Health. 1961 Jan;2:62–73. doi: 10.1080/00039896.1961.10662817. [DOI] [PubMed] [Google Scholar]
  14. HINE C. H., KODAMA J. K., GUZMAN R. J., LOQUVAM G. S. The toxicity of allylamines. Arch Environ Health. 1960 Oct;1:343–352. doi: 10.1080/00039896.1960.10662707. [DOI] [PubMed] [Google Scholar]
  15. Hollander C. F. Cartilaginous focus at the base of the non-coronary semilunar valve of the aorta in rats of different ages. Exp Gerontol. 1968 Dec;3(4):303–307. doi: 10.1016/0531-5565(68)90041-7. [DOI] [PubMed] [Google Scholar]
  16. Jain M., Sands F., Von Korff R. W. Monoamine oxidase activity measurements using radioactive substrates. Anal Biochem. 1973 Apr;52(2):542–554. doi: 10.1016/0003-2697(73)90060-2. [DOI] [PubMed] [Google Scholar]
  17. James T. N. Small arteries of the heart. Circulation. 1977 Jul;56(1):2–14. doi: 10.1161/01.cir.56.1.2. [DOI] [PubMed] [Google Scholar]
  18. LEHOCZKY-MONA J., MCCANDLESS E. L. ISCHEMIC INDUCTION OF CHONDROGENESIS IN MYOCARDIUM. Arch Pathol. 1964 Jul;78:37–42. [PubMed] [Google Scholar]
  19. LOWRY O. H., ROSEBROUGH N. J., FARR A. L., RANDALL R. J. Protein measurement with the Folin phenol reagent. J Biol Chem. 1951 Nov;193(1):265–275. [PubMed] [Google Scholar]
  20. Lalich J. J., Allen J. R., Paik W. C. Myocardial fibrosis and smooth muscle cell hyperplasia in coronary arteries of allylamine-fed rats. Am J Pathol. 1972 Feb;66(2):225–240. [PMC free article] [PubMed] [Google Scholar]
  21. Lalich J. J. Coronary artery hyalinosis in rats fed allylamine. Exp Mol Pathol. 1969 Feb;10(1):14–26. doi: 10.1016/0014-4800(69)90045-8. [DOI] [PubMed] [Google Scholar]
  22. Lalich J. J., Paik W. C. Influence of hydralazine consumption on allylamine induced myocardial fibrosis and hypertrophy in rats. Exp Mol Pathol. 1974 Aug;21(1):29–39. doi: 10.1016/0014-4800(74)90076-8. [DOI] [PubMed] [Google Scholar]
  23. Lehr D., Chau R. Changes of the cardiac electrolyte content during development and healing of experimental myocardial infarction. Recent Adv Stud Cardiac Struct Metab. 1973;3:721–751. [PubMed] [Google Scholar]
  24. Lowman R. M., Hipona F. A., Vidone R. A. The experimental production of unilateral renal artery injury and hypertension. I. The arteriography of allylamine-induced renal vascular lesions in the dog. Radiology. 1966 Jun;86(6):1003–1009. doi: 10.1148/86.6.1003. [DOI] [PubMed] [Google Scholar]
  25. Lowman R. M., Solitaire G. B., McAllister W. B. Experimental production of intracranial vascular lesions. Allylamine-induced vascular lesions of the brain and intracranial infarction. Acta Radiol Diagn (Stockh) 1969;9:383–398. [PubMed] [Google Scholar]
  26. MUELLER E., PEARSE A. G. LOCALIZATION OF MONOAMINE OXIDASE IN MAMMALIAN AND REPTILIAN HEART. Br Heart J. 1965 Jan;27:116–120. doi: 10.1136/hrt.27.1.116. [DOI] [PMC free article] [PubMed] [Google Scholar]
  27. McGEE-RUSSELL S. M. Histochemical methods for calcium. J Histochem Cytochem. 1958 Jan;6(1):22–42. doi: 10.1177/6.1.22. [DOI] [PubMed] [Google Scholar]
  28. NORCIA L. N., GONZALEZ I. E., SHETLAR M. R., PETER J. A., FURMAN R. H. Alterations of protein, lipid and polysaccharide composition of canine aortas induced by allylamine, gonadal steroids and castration. Am J Physiol. 1958 Dec;195(3):759–768. doi: 10.1152/ajplegacy.1958.195.3.759. [DOI] [PubMed] [Google Scholar]
  29. Ness G. C., Lalich J. J., Porter J. W. Stimulation of hepatic beta-hydroxy-beta-methylglutaryl coenzyme A reductase activity in allylamine-fed rats. Atherosclerosis. 1974 Mar-Apr;19(2):185–189. doi: 10.1016/0021-9150(74)90053-7. [DOI] [PubMed] [Google Scholar]
  30. Paik W. C., Lalich J. Factors which contribute to aortic fibrous repair in rats fed beta-aminopropionitrile. Lab Invest. 1970 Jan;22(1):28–35. [PubMed] [Google Scholar]
  31. Rando R. R., Eigner A. The pseudoirreversible inhibition of monoamine oxidase by allylamine. Mol Pharmacol. 1977 Nov;13(6):1005–1013. [PubMed] [Google Scholar]
  32. Reichenbach D. D., Benditt E. P. Myofibrillar degeneration. A response of the myocardial cell to injury. Arch Pathol. 1968 Feb;85(2):189–199. [PubMed] [Google Scholar]
  33. SCHLESINGER M. J., REINER L. Focal myocytolysis of the heart. Am J Pathol. 1955 May-Jun;31(3):443–459. [PMC free article] [PubMed] [Google Scholar]
  34. STUDER A., BAUMGARTNER H. R., REVER K. HISTOCHEMICAL EVIDENCE OF MONOAMINE OXIDASE ACTIVITY IN RATS OF DIFFERENT AGES. Z Zellforch Microsk Anat Histochem. 1964;79:43–47. doi: 10.1007/BF00304177. [DOI] [PubMed] [Google Scholar]
  35. Saito D. Effect of coronary vasodilators on cardiac dynamics of the normal dog and the dog with experimental coronary sclerosis. Jpn Circ J. 1976 Apr;40(4):363–397. doi: 10.1253/jcj.40.363. [DOI] [PubMed] [Google Scholar]
  36. Saito D., Haraoka S., Hirano K., Ueda M., Fujimoto T. Effect of diltiazem on coronary blood flow of the heart with experimental coronary sclerosis and on regional myocardial blood flow of the heart with acute myocardial ischemia. Arzneimittelforschung. 1977;27(9):1669–1676. [PubMed] [Google Scholar]
  37. Shen A. C., Jennings R. B. Kinetics of calcium accumulation in acute myocardial ischemic injury. Am J Pathol. 1972 Jun;67(3):441–452. [PMC free article] [PubMed] [Google Scholar]
  38. Shen A. C., Jennings R. B. Myocardial calcium and magnesium in acute ischemic injury. Am J Pathol. 1972 Jun;67(3):417–440. [PMC free article] [PubMed] [Google Scholar]
  39. Suzuki K., Ooneda G. Cerebral arterial lesions in experimental hypertensive rats: electron microscopic study of middle cerebral arteries. Exp Mol Pathol. 1972 Jun;16(3):341–352. doi: 10.1016/0014-4800(72)90009-3. [DOI] [PubMed] [Google Scholar]
  40. Suzuki O., Noguchi E., Yagi K. A simple micro-determination of type B monoamine oxidase. Biochem Pharmacol. 1976 Dec 15;25(24):2759–2760. doi: 10.1016/0006-2952(76)90272-0. [DOI] [PubMed] [Google Scholar]
  41. WATERS L. L. Studies on the pathogenesis of vascular disease. The effect of a short-term, cholesterol-rich diet on inflammatory lesions of the coronary arteries of dogs. Yale J Biol Med. 1962 Aug;35:113–121. [PMC free article] [PubMed] [Google Scholar]
  42. WENER J., PINTAR K., SIMON M. A., MOTOLA R., FRIEDMAN R., MAYMAN A., SCHUCHER R. THE EFFECTS OF PROLONGED HYPOMAGNESEMIA ON THE CARDIOVASCULAR SYSTEM IN YOUNG DOGS. Am Heart J. 1964 Feb;67:221–231. doi: 10.1016/0002-8703(64)90372-2. [DOI] [PubMed] [Google Scholar]
  43. Will J. A., Rowe G. G., Olson C., Crumpton C. W. A chemically induced acute model of myocardial damage in intact calves. Res Commun Chem Pathol Pharmacol. 1971 Jan;2(1):61–66. [PubMed] [Google Scholar]

Articles from The American Journal of Pathology are provided here courtesy of American Society for Investigative Pathology

RESOURCES