Abstract
The synthesis and secretion of sulfated glycosaminoglycans (GAGs) by aorta explant monolayers cultured from atherosclerosis-susceptible White Carneau (WC) and atherosclerosis resistant Show Racer SR pigeons have been compared. Primary cultures of WC pigeon aorta incorporation three to four times as much 35-S-sulfate into trichloroacetic acid (TCA) soluble, nondialyzable material that is over 90% sensitive to chondroitinase ABC digestion when compared with parallel cultures of SR pigeon aorta. Qualitatively, the GAGs produced by WC and SR aorta explants were similar in that their electrophoretic profiles were characterized by a prominent slow migrating band that did not coelectrophorese with known GAG standards, a discrete hyaluronic acid and heparan sulfate band and a broad band containing dermatan sulfate and chondroitin 4- and 6-sulfate. Enzyme digestion of the labeled material revealed that cultures of each breed synthesized and secreted predominantly chondroitin sulfate (approximately 60%) with moderate amounts of dermatan sulfate (approximately 35%) and little heparan sulfate (< 5%). This pattern of GAG distribution resembled that of GAGs present in pigeon aortas in vivo. Although differences in the relative percentages of each type of GAG produced by aorta explant cultures from each breed were not evident, densitometric tracings and radioisotopic activity of the electrophoretically separated GAGs indicate more sulfated GAG of each type present in WC as compared with SR cultures. Glycosaminoglycan-containing proteoglycans were also demonstrated morphologically in the aorta explant monolayers of each breed and resembled aortic proteoglycans in vivo. Proteoglycans in vitro existed as discrete 200-500-A polygonal granules, exhibited a marked affinity for ruthenium red, were intimately associated with each other through filamentous projections as well as with other components of the intercellular matrix (collagen and elastic fiber), and were completely sensitive to chondroitinase ABC digestion. This culture system is offered as a useful model for future investigations concerned with relating GAG metabolism to susceptibility to atherosclerosis.
Full text
PDF















Images in this article
Selected References
These references are in PubMed. This may not be the complete list of references from this article.
- Berenson G. S., Radhakrishnamurthy B., Dalferes E. R., Jr, Srinivasan S. R. Carbohydrate macromolecules and atherosclerosis. Hum Pathol. 1971 Mar;2(1):57–79. doi: 10.1016/s0046-8177(71)80021-7. [DOI] [PubMed] [Google Scholar]
- Curwen K. D., Smith S. C. Aortic glycosaminoglycans in atherosclerosis-susceptible and -resistant pigeons. Exp Mol Pathol. 1977 Aug;27(1):121–133. doi: 10.1016/0014-4800(77)90024-7. [DOI] [PubMed] [Google Scholar]
- Curwen K. D., Smith S. C. Quantitative microanalysis of aortic glycosaminoglycans. Anal Biochem. 1977 May 1;79(1-2):291–301. doi: 10.1016/0003-2697(77)90404-3. [DOI] [PubMed] [Google Scholar]
- Dalferes E. R., Jr, Ruiz H., Kumar V., Radhakrishnamurthy B., Berenson G. S. Acid mucopolysaccharides of fatty streaks in young, human male aortas. Atherosclerosis. 1971 Jan-Feb;13(1):121–131. doi: 10.1016/0021-9150(71)90013-x. [DOI] [PubMed] [Google Scholar]
- Ehrlich K. C., Radhakrishnamurthy B., Berenson G. S. Isolation of a chondroitin sulfate--dermatan sulfate proteoglycan from bovine aorta. Arch Biochem Biophys. 1975 Nov;171(1):361–369. doi: 10.1016/0003-9861(75)90043-0. [DOI] [PubMed] [Google Scholar]
- Eisenstein R., Kuettner K. The ground substance of the arterial wall. Part 2. Electron-microscopic studies. Atherosclerosis. 1976 Jul-Aug;24(1-2):37–46. doi: 10.1016/0021-9150(76)90062-9. [DOI] [PubMed] [Google Scholar]
- Eisenstein R., Larsson S. E., Kuettner K. E., Sorgente N., Hascal V. C. The ground substance of the arterial wall. Part 1. Extractability of glycosaminoglycans and the isolation of a proteoglycan from bovine aorta. Atherosclerosis. 1975 Jul-Aug;22(1):1–17. doi: 10.1016/0021-9150(75)90064-7. [DOI] [PubMed] [Google Scholar]
- Engel U. R. Glycosaminoglycans in the aorta of six animal species. A chemical and morphological comparison of their topographical distribution. Atherosclerosis. 1971 Jan-Feb;13(1):45–60. doi: 10.1016/0021-9150(71)90005-0. [DOI] [PubMed] [Google Scholar]
- GERO S., GERGELY J., DEVENYI T., JAKAB L., SZEKELY J., VIRAG S. Role of intimal mucoid substances in the pathogenesis of atherosclerosis. I. Complex formation in vitro between mucopolysaccharides from atherosclerotic aortic intimas and plasma beta-lipoprotein and fibrinogen. J Atheroscler Res. 1961 Jan-Feb;1:67–74. doi: 10.1016/s0368-1319(61)80055-0. [DOI] [PubMed] [Google Scholar]
- Gardais A., Picard J., Hermelin B. Glycosaminoglycan (GAG) distribution in aortic wall from five species. Comp Biochem Physiol B. 1973 Feb 15;44(2):507–515. doi: 10.1016/0305-0491(73)90025-4. [DOI] [PubMed] [Google Scholar]
- Helin P., Lorenzen I., Garbarsch C., Matthiessen M. E. Repair in arterial tissue. Morphological and biochemical changes in rabbit aorta after a single dilatation injury. Circ Res. 1971 Nov;29(5):542–554. doi: 10.1161/01.res.29.5.542. [DOI] [PubMed] [Google Scholar]
- Iverius P. H. The interaction between human plasma lipoproteins and connective tissue glycosaminoglycans. J Biol Chem. 1972 Apr 25;247(8):2607–2613. [PubMed] [Google Scholar]
- KAPLAN D., MEYER K. Mucopolysaccharides of aorta at various ages. Proc Soc Exp Biol Med. 1960 Oct;105:78–81. doi: 10.3181/00379727-105-26015. [DOI] [PubMed] [Google Scholar]
- KISSANE J. M., ROBINS E. The fluorometric measurement of deoxyribonucleic acid in animal tissues with special reference to the central nervous system. J Biol Chem. 1958 Jul;233(1):184–188. [PubMed] [Google Scholar]
- Kresse H., Heidel H., Buddecke E. Chemical and metabolic heterogeneity of a bovine aorta chondroitin sulfate-dermatan sulfate proteoglycan. Eur J Biochem. 1971 Oct 26;22(4):557–562. doi: 10.1111/j.1432-1033.1971.tb01577.x. [DOI] [PubMed] [Google Scholar]
- Kresse H., von Figura K., Buddecke E., Fromme H. G. Metabolism of sulfated glycosaminoglycans in cultivated bovine arterial cells. I. Characterization of different pools of sulfated glycosaminoglycans. Hoppe Seylers Z Physiol Chem. 1975 Jun;356(6):929–941. doi: 10.1515/bchm2.1975.356.s1.929. [DOI] [PubMed] [Google Scholar]
- Kumar V., Berenson G. S., Ruiz H., Dalferes E. R., Jr, Strong J. P. Acid mucopolysaccharides of human aorta. 1. Variations with maturation. J Atheroscler Res. 1967 Sep-Oct;7(5):573–581. doi: 10.1016/s0368-1319(67)80035-8. [DOI] [PubMed] [Google Scholar]
- Kumar V., Berenson G. S., Ruiz H., Dalferes E. R., Jr, Strong J. P. Acid mucopolysaccharides of human aorta. 2. Variations with atherosclerotic involvement. J Atheroscler Res. 1967 Sep-Oct;7(5):583–590. doi: 10.1016/s0368-1319(67)80036-x. [DOI] [PubMed] [Google Scholar]
- Kurtz M. J., Stidworthy G. H. Control over acid mucopolysaccharide production of cells in vitro. Biochim Biophys Acta. 1975 Jul 14;399(1):90–100. doi: 10.1016/0304-4165(75)90215-9. [DOI] [PubMed] [Google Scholar]
- Kádár A., Gardner D. L., Bush V. Glycosaminoglycans in developing chick-embryo aorta revealed by ruthenium red: an electron-microscope study. J Pathol. 1972 Dec;108(4):275–280. doi: 10.1002/path.1711080403. [DOI] [PubMed] [Google Scholar]
- Luft J. H. Fine structures of capillary and endocapillary layer as revealed by ruthenium red. Fed Proc. 1966 Nov-Dec;25(6):1773–1783. [PubMed] [Google Scholar]
- Malström A., Carlstedt I., Aberg L., Fransson L. A. The copolymeric structure of dermatan sulphate produced by cultured human fibroblasts. Different distribution of iduronic acid and glucuronic acid-containing units in soluble and cell-associated glycans. Biochem J. 1975 Dec;151(3):477–489. doi: 10.1042/bj1510477. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Mancini M., Rossi G. B., Oriente P., Calí A. Possible relationship between aortic acid mucopolysaccharides and species-susceptibility to experimental atherosclerosis. Nature. 1965 Sep 11;207(5002):1206–1206. doi: 10.1038/2071206a0. [DOI] [PubMed] [Google Scholar]
- Merrilees M. J., Merrilees M. A., Birnbaum P. S., Scott P. J., Flint M. H. The effect of centrifugal force on glycosaminoglycan production by aortic smooth muscle cells in culture. Atherosclerosis. 1977 Jul;27(3):259–264. doi: 10.1016/0021-9150(77)90034-x. [DOI] [PubMed] [Google Scholar]
- Murata K., Nakazawa K., Hamai A. Distribution of acidic glycosaminoglycans in the intima, media and adventitia of bovine aorta and their anticoagulant properties. Atherosclerosis. 1975 Jan-Feb;21(1):93–103. doi: 10.1016/0021-9150(75)90096-9. [DOI] [PubMed] [Google Scholar]
- Nameroff M., Holtzer H. The loss of phenotypic traits by differentiated cells. IV. Changes in polysaccharides produced by dividing chondrocytes. Dev Biol. 1967 Sep;16(3):250–281. doi: 10.1016/0012-1606(67)90026-7. [DOI] [PubMed] [Google Scholar]
- Nicolosi R. J., Santerre R. F., Smith S. C. Recovery of buoyant and fragile lipid-laden cells from in vitro cultures by centrifugal filtration. Exp Cell Res. 1971 Jul;67(1):220–222. doi: 10.1016/0014-4827(71)90640-9. [DOI] [PubMed] [Google Scholar]
- Oegema T. R., Jr, Hascall V. C., Eisenstein R. Characterization of bovine aorta proteoglycan extracted with guanidine hydrochloride in the presence of protease inhibitors. J Biol Chem. 1979 Feb 25;254(4):1312–1318. [PubMed] [Google Scholar]
- REYNOLDS E. S. The use of lead citrate at high pH as an electron-opaque stain in electron microscopy. J Cell Biol. 1963 Apr;17:208–212. doi: 10.1083/jcb.17.1.208. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Radhakrishnamurthy B., Eggen D. A., Kokatnur M., Jirge S., Strong J. P., Berenson G. S. Composition of connective tissue in aortas from rhesus monkeys during regression of diet-induced fatty streaks. Lab Invest. 1975 Aug;33(2):136–140. [PubMed] [Google Scholar]
- Robinson R. W., Likar I. N., Likar L. J. Glycosaminoglycans and arterial disease. Monogr Atheroscler. 1975;5:V-VIII, 1-136. [PubMed] [Google Scholar]
- SMITH S. C., STROUT R. G., DUNLOP W. R., SMITH E. C. FATTY ACID COMPOSITION OF CULTURED AORTIC CELLS FROM WHITE CARNEAU AND SHOW RACER PIGEONS. J Atheroscler Res. 1965 Jul-Aug;5(4):379–387. doi: 10.1016/s0368-1319(65)80073-4. [DOI] [PubMed] [Google Scholar]
- Saito H., Yamagata T., Suzuki S. Enzymatic methods for the determination of small quantities of isomeric chondroitin sulfates. J Biol Chem. 1968 Apr 10;243(7):1536–1542. [PubMed] [Google Scholar]
- Schwartz E. R., Kirkpatrick P. R., Thompson R. C. The effect of environmental pH on glycosaminoglycan metabolism by normal human chondrocytes. J Lab Clin Med. 1976 Feb;87(2):198–205. [PubMed] [Google Scholar]
- Srinivasan S. R., Dolan P., Radhakrishnamurthy B., Berenson G. S. Isolation of lipoprotein-acid mucopolysaccharide complexes from fatty streaks of human aorta. Prep Biochem. 1972;2(1):83–91. doi: 10.1080/00327487208061455. [DOI] [PubMed] [Google Scholar]
- Srinivasan S. R., Radhakrishnamurthy B., Pargaonkar P. S., Berenson G. S., Dolan P. Lipoprotein-acid mucopolysaccharide complexes of human atherosclerotic lesions. Biochim Biophys Acta. 1975 Apr 18;388(1):58–70. doi: 10.1016/0005-2760(75)90062-4. [DOI] [PubMed] [Google Scholar]
- Stefanovich V., Akiyama K. Comparative studies of aortic acid mucopolysaccharides in fifteen species. Comp Biochem Physiol. 1970 May 1;34(1):125–130. doi: 10.1016/0010-406x(70)90059-9. [DOI] [PubMed] [Google Scholar]
- Stevens R. L., Colombo M., Gonzales J. J., Hollander W., Schmid K. The glycosaminoglycans of the human artery and their changes in atherosclerosis. J Clin Invest. 1976 Aug;58(2):470–481. doi: 10.1172/JCI108491. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Trillo A. Ultrastructure of proteoglycans in human renal arteries from end stage renal disease. Atherosclerosis. 1977 Oct;28(2):161–169. doi: 10.1016/0021-9150(77)90153-8. [DOI] [PubMed] [Google Scholar]
- Wagh P. V., Roberts B. I., White H. J., Read R. C. Changes in the content of human aortic glycoproteins and acid mucopolysaccharides in atherosclerosis. Atherosclerosis. 1973 Jul-Aug;18(1):83–91. doi: 10.1016/0021-9150(73)90119-6. [DOI] [PubMed] [Google Scholar]
- Wight T. N., Cooke P. H., Smith S. C. An electron microscopic study of pigeon aorta cell cultures. Cytodifferentiation and intracellular lipid accumulation. Exp Mol Pathol. 1977 Aug;27(1):1–18. doi: 10.1016/0014-4800(77)90015-6. [DOI] [PubMed] [Google Scholar]
- Wight T. N., Ross R. Proteoglycans in primate arteries. I. Ultrastructural localization and distribution in the intima. J Cell Biol. 1975 Dec;67(3):660–674. doi: 10.1083/jcb.67.3.660. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Wight T. N., Ross R. Proteoglycans in primate arteries. II. Synthesis and secretion of glycosaminoglycans by arterial smooth muscle cells in culture. J Cell Biol. 1975 Dec;67(3):675–686. doi: 10.1083/jcb.67.3.675. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Woodard J. F., Srinivasan S. R., Zimny M. L., Radhakrishnamurphy B., Berenson G. S. Electron microscopic features of lipoprotein-glycosaminoglycan complexes from human atherosclerotic plaques. Lab Invest. 1976 May;34(5):516–521. [PubMed] [Google Scholar]
- Yamamoto K., Yamamoto M., Ooka H. Cell surface changes associated with aging of chick embryo fibroblasts in culture. Exp Cell Res. 1977 Aug;108(1):87–93. doi: 10.1016/s0014-4827(77)80013-x. [DOI] [PubMed] [Google Scholar]





