Skip to main content
The American Journal of Pathology logoLink to The American Journal of Pathology
. 1980 Oct;101(1):7–16.

Anatomic pathway of fluid leakage in fluid-overload pulmonary edema in mice.

K Yoneda
PMCID: PMC1903589  PMID: 7446703

Abstract

Mice were given an intravenous injection of isotonic saline containing horseradish peroxidase (HRP) as an ultrastructural marker in an attempt to determine the site of fluid leakage from the vascular space to the air space in the lung. The localization of HRP was studied by ultrastructural histochemistry. When injected in a small volume of saline (0.1 ml), HRP was confined in the vascular space. When the volume of saline was increased to 1.0 ml, the reaction product of HRP was found first in the intercellular junctions of the arterial endothelium and then through the arterial wall. The reaction product was traced from the arterial wall to the peribronchiolar tissue, bronchiolar wall, and the intercellular space of the bronchiolar epithelium. HRP was seen in direct contact with the air space in the bronchiole. It is suggested that in fluid-overload pulmonary edema, fluid leaks through the arterial wall to the peribronchiolar tissue and then into the intercellular space of the bronchiolar epithelium. Alveolar is probably a result of the backflow of fluid from the bronchiole.

Full text

PDF
7

Images in this article

Selected References

These references are in PubMed. This may not be the complete list of references from this article.

  1. Cotran K. S., Karnovsky M. J. Vascular leakage induced by horseradish peroxidase in the rat. Proc Soc Exp Biol Med. 1967 Nov;126(2):557–561. doi: 10.3181/00379727-126-32504. [DOI] [PubMed] [Google Scholar]
  2. Cunningham A. L., Hurley J. V. Alpha-naphthyl-thiourea-induced pulmonary oedema in the rat: a topographical and electron-microscope study. J Pathol. 1972 Jan;106(1):25–35. doi: 10.1002/path.1711060103. [DOI] [PubMed] [Google Scholar]
  3. Finegold M. J. Interstitial pulmonary edema. An electron microscopic study of the pathology of staphylococcal enterotoxemia in Rhesus monkeys. Lab Invest. 1967 Jun;16(6):912–924. doi: 10.21236/ad0811615. [DOI] [PubMed] [Google Scholar]
  4. Graham R. C., Jr, Karnovsky M. J. The early stages of absorption of injected horseradish peroxidase in the proximal tubules of mouse kidney: ultrastructural cytochemistry by a new technique. J Histochem Cytochem. 1966 Apr;14(4):291–302. doi: 10.1177/14.4.291. [DOI] [PubMed] [Google Scholar]
  5. Harrison L. H., Beller J. J., Hinshaw L. B., Coalson J. J., Greenfield L. J. Effects of endotoxin on pulmonary capillary permeability, ultrastructure, and surfactant. Surg Gynecol Obstet. 1969 Oct;129(4):723–733. [PubMed] [Google Scholar]
  6. Hatakeyama S., Shigei T. Comparative study of the fine-structural changes of alveolar wall in adrenaline- and anti-pulmonary edema of the rat. Jpn J Pharmacol. 1968 Jun;18(2):279–280. doi: 10.1254/jjp.18.279. [DOI] [PubMed] [Google Scholar]
  7. Inoue S., Michel R. P., Hogg J. C. Zonulae occludentes in alveolar epithelium and capillary endothelium of dog lungs studies with the freeze-fracture technique. J Ultrastruct Res. 1976 Aug;56(2):215–225. doi: 10.1016/s0022-5320(76)80167-0. [DOI] [PubMed] [Google Scholar]
  8. Pietra G. G., Szidon J. P., Carpenter H. A., Fishman A. P. Bronchial venular leakage during endotoxin shock. Am J Pathol. 1974 Dec;77(3):387–406. [PMC free article] [PubMed] [Google Scholar]
  9. Pietra G. G., Szidon J. P., Leventhal M. M., Fishman A. P. Hemoglobin as a tracer in hemodynamic pulmonary edema. Science. 1969 Dec 26;166(3913):1643–1646. doi: 10.1126/science.166.3913.1643. [DOI] [PubMed] [Google Scholar]
  10. Rhodin J. A. Microscopic anatomy of the pulmonary vascular bed in the cat lung. Microvasc Res. 1978 Mar;15(2):169–193. doi: 10.1016/0026-2862(78)90017-1. [DOI] [PubMed] [Google Scholar]
  11. Ryan G. B., Majno G. Acute inflammation. A review. Am J Pathol. 1977 Jan;86(1):183–276. [PMC free article] [PubMed] [Google Scholar]
  12. Schneeberger-Keeley E. E., Karnovsky M. J. The ultrastructural basis of alveolar-capillary membrane permeability to peroxidase used as a tracer. J Cell Biol. 1968 Jun;37(3):781–793. doi: 10.1083/jcb.37.3.781. [DOI] [PMC free article] [PubMed] [Google Scholar]
  13. Schneeberger E. E., Karnovsky M. J. Substructure of intercellular junctions in freeze-fractured alveolar-capillary membranes of mouse lung. Circ Res. 1976 May;38(5):404–411. doi: 10.1161/01.res.38.5.404. [DOI] [PubMed] [Google Scholar]
  14. Simionescu N., Simionescu M., Palade G. E. Structural basis of permeability in sequential segments of the microvasculature of the diaphragm. II. Pathways followed by microperoxidase across the endothelium. Microvasc Res. 1978 Jan;15(1):17–36. doi: 10.1016/0026-2862(78)90002-x. [DOI] [PubMed] [Google Scholar]
  15. Taylor A. E., Gaar K. A., Jr Estimation of equivalent pore radii of pulmonary capillary and alveolar membranes. Am J Physiol. 1970 Apr;218(4):1133–1140. doi: 10.1152/ajplegacy.1970.218.4.1133. [DOI] [PubMed] [Google Scholar]
  16. Wissig S. L., Williams M. C. Permeability of muscle capillaries to microperoxidase. J Cell Biol. 1978 Feb;76(2):341–359. doi: 10.1083/jcb.76.2.341. [DOI] [PMC free article] [PubMed] [Google Scholar]
  17. Woolverton W. C., Brigham K. L., Staub N. C. Effect of positive pressure breathing on lung lymph flow and water content in sheep. Circ Res. 1978 Apr;42(4):550–557. doi: 10.1161/01.res.42.4.550. [DOI] [PubMed] [Google Scholar]

Articles from The American Journal of Pathology are provided here courtesy of American Society for Investigative Pathology

RESOURCES