Skip to main content
Journal of Virology logoLink to Journal of Virology
. 1996 Jul;70(7):4291–4298. doi: 10.1128/jvi.70.7.4291-4298.1996

Equine arteritis virus subgenomic mRNA synthesis: analysis of leader-body junctions and replicative-form RNAs.

J A den Boon 1, M F Kleijnen 1, W J Spaan 1, E J Snijder 1
PMCID: PMC190361  PMID: 8676451

Abstract

In addition to the genomic RNA, a 3' coterminal nested set of six subgenomic mRNAs is produced in equine arteritis virus (EAV)-infected cells. The seven viral RNAs are also 5' coterminal, since they all contain a 206-nucleotide common leader sequence which is identical to the 5' end of the genome. A conserved penta-nucleotide sequence motif, 5' UCAAC 3', was shown to be present at the junctions between the leader and body sequences in each of the mRNAs. In addition, two alternative junction sites were detected for mRNA 3. Seven replicative-form (RF) RNAs (RFs I to VII), corresponding to the genomic RNA and each of the subgenomic EAV mRNAs, could be prepared from lysates of infected cells. The minus-strand RNA contents of these RF RNAs were analyzed by using an RNase protection assay with an RNA probe containing the mRNA 2 leader-body junction. It was established that RF II contained a negative-stranded copy of mRNA 2, including a complementary leader sequence. The presence of subgenomic minus-strand RNA in RFs is indicative of a function as a transcription template during the production of EAV subgenomic mRNAs.

Full Text

The Full Text of this article is available as a PDF (508.5 KB).

Selected References

These references are in PubMed. This may not be the complete list of references from this article.

  1. Baker S. C., Lai M. M. An in vitro system for the leader-primed transcription of coronavirus mRNAs. EMBO J. 1990 Dec;9(12):4173–4179. doi: 10.1002/j.1460-2075.1990.tb07641.x. [DOI] [PMC free article] [PubMed] [Google Scholar]
  2. Chen Z., Faaberg K. S., Plagemann P. G. Detection of negative-stranded subgenomic RNAs but not of free leader in LDV-infected macrophages. Virus Res. 1994 Nov;34(2):167–177. doi: 10.1016/0168-1702(94)90098-1. [DOI] [PMC free article] [PubMed] [Google Scholar]
  3. Chen Z., Kuo L., Rowland R. R., Even C., Faaberg K. S., Plagemann P. G. Sequences of 3' end of genome and of 5' end of open reading frame 1a of lactate dehydrogenase-elevating virus and common junction motifs between 5' leader and bodies of seven subgenomic mRNAs. J Gen Virol. 1993 Apr;74(Pt 4):643–659. doi: 10.1099/0022-1317-74-4-643. [DOI] [PubMed] [Google Scholar]
  4. Conzelmann K. K., Visser N., Van Woensel P., Thiel H. J. Molecular characterization of porcine reproductive and respiratory syndrome virus, a member of the arterivirus group. Virology. 1993 Mar;193(1):329–339. doi: 10.1006/viro.1993.1129. [DOI] [PMC free article] [PubMed] [Google Scholar]
  5. Den Boon J. A., Spaan W. J., Snijder E. J. Equine arteritis virus subgenomic RNA transcription: UV inactivation and translation inhibition studies. Virology. 1995 Nov 10;213(2):364–372. doi: 10.1006/viro.1995.0009. [DOI] [PMC free article] [PubMed] [Google Scholar]
  6. Godeny E. K., Chen L., Kumar S. N., Methven S. L., Koonin E. V., Brinton M. A. Complete genomic sequence and phylogenetic analysis of the lactate dehydrogenase-elevating virus (LDV). Virology. 1993 Jun;194(2):585–596. doi: 10.1006/viro.1993.1298. [DOI] [PMC free article] [PubMed] [Google Scholar]
  7. Godeny E. K., Zeng L., Smith S. L., Brinton M. A. Molecular characterization of the 3' terminus of the simian hemorrhagic fever virus genome. J Virol. 1995 Apr;69(4):2679–2683. doi: 10.1128/jvi.69.4.2679-2683.1995. [DOI] [PMC free article] [PubMed] [Google Scholar]
  8. Jeong Y. S., Makino S. Mechanism of coronavirus transcription: duration of primary transcription initiation activity and effects of subgenomic RNA transcription on RNA replication. J Virol. 1992 Jun;66(6):3339–3346. doi: 10.1128/jvi.66.6.3339-3346.1992. [DOI] [PMC free article] [PubMed] [Google Scholar]
  9. Lai M. M. Coronavirus: organization, replication and expression of genome. Annu Rev Microbiol. 1990;44:303–333. doi: 10.1146/annurev.mi.44.100190.001511. [DOI] [PubMed] [Google Scholar]
  10. Makino S., Soe L. H., Shieh C. K., Lai M. M. Discontinuous transcription generates heterogeneity at the leader fusion sites of coronavirus mRNAs. J Virol. 1988 Oct;62(10):3870–3873. doi: 10.1128/jvi.62.10.3870-3873.1988. [DOI] [PMC free article] [PubMed] [Google Scholar]
  11. Meinkoth J., Wahl G. Hybridization of nucleic acids immobilized on solid supports. Anal Biochem. 1984 May 1;138(2):267–284. doi: 10.1016/0003-2697(84)90808-x. [DOI] [PubMed] [Google Scholar]
  12. Meulenberg J. J., Hulst M. M., de Meijer E. J., Moonen P. L., den Besten A., de Kluyver E. P., Wensvoort G., Moormann R. J. Lelystad virus, the causative agent of porcine epidemic abortion and respiratory syndrome (PEARS), is related to LDV and EAV. Virology. 1993 Jan;192(1):62–72. doi: 10.1006/viro.1993.1008. [DOI] [PMC free article] [PubMed] [Google Scholar]
  13. Meulenberg J. J., de Meijer E. J., Moormann R. J. Subgenomic RNAs of Lelystad virus contain a conserved leader-body junction sequence. J Gen Virol. 1993 Aug;74(Pt 8):1697–1701. doi: 10.1099/0022-1317-74-8-1697. [DOI] [PubMed] [Google Scholar]
  14. Novak J. E., Kirkegaard K. Improved method for detecting poliovirus negative strands used to demonstrate specificity of positive-strand encapsidation and the ratio of positive to negative strands in infected cells. J Virol. 1991 Jun;65(6):3384–3387. doi: 10.1128/jvi.65.6.3384-3387.1991. [DOI] [PMC free article] [PubMed] [Google Scholar]
  15. Plagemann P. G., Moennig V. Lactate dehydrogenase-elevating virus, equine arteritis virus, and simian hemorrhagic fever virus: a new group of positive-strand RNA viruses. Adv Virus Res. 1992;41:99–192. doi: 10.1016/S0065-3527(08)60036-6. [DOI] [PMC free article] [PubMed] [Google Scholar]
  16. Sawicki S. G., Sawicki D. L. Coronavirus transcription: subgenomic mouse hepatitis virus replicative intermediates function in RNA synthesis. J Virol. 1990 Mar;64(3):1050–1056. doi: 10.1128/jvi.64.3.1050-1056.1990. [DOI] [PMC free article] [PubMed] [Google Scholar]
  17. Schaad M. C., Baric R. S. Genetics of mouse hepatitis virus transcription: evidence that subgenomic negative strands are functional templates. J Virol. 1994 Dec;68(12):8169–8179. doi: 10.1128/jvi.68.12.8169-8179.1994. [DOI] [PMC free article] [PubMed] [Google Scholar]
  18. Sethna P. B., Hofmann M. A., Brian D. A. Minus-strand copies of replicating coronavirus mRNAs contain antileaders. J Virol. 1991 Jan;65(1):320–325. doi: 10.1128/jvi.65.1.320-325.1991. [DOI] [PMC free article] [PubMed] [Google Scholar]
  19. Sethna P. B., Hung S. L., Brian D. A. Coronavirus subgenomic minus-strand RNAs and the potential for mRNA replicons. Proc Natl Acad Sci U S A. 1989 Jul;86(14):5626–5630. doi: 10.1073/pnas.86.14.5626. [DOI] [PMC free article] [PubMed] [Google Scholar]
  20. Shieh C. K., Soe L. H., Makino S., Chang M. F., Stohlman S. A., Lai M. M. The 5'-end sequence of the murine coronavirus genome: implications for multiple fusion sites in leader-primed transcription. Virology. 1987 Feb;156(2):321–330. doi: 10.1016/0042-6822(87)90412-0. [DOI] [PMC free article] [PubMed] [Google Scholar]
  21. Simmons D. T., Strauss J. H. Replication of Sindbis virus. II. Multiple forms of double-stranded RNA isolated from infected cells. J Mol Biol. 1972 Nov 28;71(3):615–631. doi: 10.1016/s0022-2836(72)80027-5. [DOI] [PubMed] [Google Scholar]
  22. Snijder E. J., Wassenaar A. L., Spaan W. J., Gorbalenya A. E. The arterivirus Nsp2 protease. An unusual cysteine protease with primary structure similarities to both papain-like and chymotrypsin-like proteases. J Biol Chem. 1995 Jul 14;270(28):16671–16676. doi: 10.1074/jbc.270.28.16671. [DOI] [PubMed] [Google Scholar]
  23. Snijder E. J., Wassenaar A. L., Spaan W. J. Proteolytic processing of the replicase ORF1a protein of equine arteritis virus. J Virol. 1994 Sep;68(9):5755–5764. doi: 10.1128/jvi.68.9.5755-5764.1994. [DOI] [PMC free article] [PubMed] [Google Scholar]
  24. Spaan W. J., Rottier P. J., Horzinek M. C., van der Zeijst B. A. Isolation and identification of virus-specific mRNAs in cells infected with mouse hepatitis virus (MHV-A59). Virology. 1981 Jan 30;108(2):424–434. doi: 10.1016/0042-6822(81)90449-9. [DOI] [PMC free article] [PubMed] [Google Scholar]
  25. Spaan W., Cavanagh D., Horzinek M. C. Coronaviruses: structure and genome expression. J Gen Virol. 1988 Dec;69(Pt 12):2939–2952. doi: 10.1099/0022-1317-69-12-2939. [DOI] [PubMed] [Google Scholar]
  26. Strauss E. G., Rice C. M., Strauss J. H. Complete nucleotide sequence of the genomic RNA of Sindbis virus. Virology. 1984 Feb;133(1):92–110. doi: 10.1016/0042-6822(84)90428-8. [DOI] [PubMed] [Google Scholar]
  27. Strauss J. H., Strauss E. G. The alphaviruses: gene expression, replication, and evolution. Microbiol Rev. 1994 Sep;58(3):491–562. doi: 10.1128/mr.58.3.491-562.1994. [DOI] [PMC free article] [PubMed] [Google Scholar]
  28. Zeng L., Godeny E. K., Methven S. L., Brinton M. A. Analysis of simian hemorrhagic fever virus (SHFV) subgenomic RNAs, junction sequences, and 5' leader. Virology. 1995 Mar 10;207(2):543–548. doi: 10.1006/viro.1995.1114. [DOI] [PubMed] [Google Scholar]
  29. de Vries A. A., Chirnside E. D., Bredenbeek P. J., Gravestein L. A., Horzinek M. C., Spaan W. J. All subgenomic mRNAs of equine arteritis virus contain a common leader sequence. Nucleic Acids Res. 1990 Jun 11;18(11):3241–3247. doi: 10.1093/nar/18.11.3241. [DOI] [PMC free article] [PubMed] [Google Scholar]
  30. de Vries A. A., Chirnside E. D., Horzinek M. C., Rottier P. J. Structural proteins of equine arteritis virus. J Virol. 1992 Nov;66(11):6294–6303. doi: 10.1128/jvi.66.11.6294-6303.1992. [DOI] [PMC free article] [PubMed] [Google Scholar]
  31. den Boon J. A., Faaberg K. S., Meulenberg J. J., Wassenaar A. L., Plagemann P. G., Gorbalenya A. E., Snijder E. J. Processing and evolution of the N-terminal region of the arterivirus replicase ORF1a protein: identification of two papainlike cysteine proteases. J Virol. 1995 Jul;69(7):4500–4505. doi: 10.1128/jvi.69.7.4500-4505.1995. [DOI] [PMC free article] [PubMed] [Google Scholar]
  32. den Boon J. A., Snijder E. J., Chirnside E. D., de Vries A. A., Horzinek M. C., Spaan W. J. Equine arteritis virus is not a togavirus but belongs to the coronaviruslike superfamily. J Virol. 1991 Jun;65(6):2910–2920. doi: 10.1128/jvi.65.6.2910-2920.1991. [DOI] [PMC free article] [PubMed] [Google Scholar]
  33. van Berlo M. F., Horzinek M. C., van der Zeijst B. A. Equine arteritis virus-infected cells contain six polyadenylated virus-specific RNAs. Virology. 1982 Apr 30;118(2):345–352. doi: 10.1016/0042-6822(82)90354-3. [DOI] [PMC free article] [PubMed] [Google Scholar]
  34. van der Most R. G., de Groot R. J., Spaan W. J. Subgenomic RNA synthesis directed by a synthetic defective interfering RNA of mouse hepatitis virus: a study of coronavirus transcription initiation. J Virol. 1994 Jun;68(6):3656–3666. doi: 10.1128/jvi.68.6.3656-3666.1994. [DOI] [PMC free article] [PubMed] [Google Scholar]

Articles from Journal of Virology are provided here courtesy of American Society for Microbiology (ASM)

RESOURCES