Skip to main content
The American Journal of Pathology logoLink to The American Journal of Pathology
. 1980 Nov;101(2):245–263.

The distribution of lipopolysaccharide in normocomplementemic and C3-depleted rabbits and rhesus monkeys.

J C Mathison, R J Ulevitch, J R Fletcher, C G Cochrane
PMCID: PMC1903612  PMID: 7435537

Abstract

To examine the role of complement (C3) in determining the fate of lipopolysaccharide (LPS) in vivo, the distribution of LPS was studied in normocomplementemic (NC) and C3-depleted animals (pretreated with cobra venom factor [CoF]) after intravenous injection of highly purified, radioiodinated Salmonella minnesota R595 LPS. After injection of a lethal (250 micrograms) or nonlethal (5 micrograms) dose of LPS in NC and CoF rabbits and a lethal (5 mg/kg) dose of LPS in rhesus monkeys, the LPS disappeared from blood in a biphasic manner. In all cases, a substantial portion of the dose was removed from blood in an initial disappearance phase (t1/2 < 15 minutes), which, in some cases, was accelerated in CoF-treated animals. LPS remaining in blood beyond 30 minutes persisted with a much increased half-life (> 5 hours). Liver contained the major portion (40%) of tissue-bound LPS (determined by use of 131I-BSA blood marker) in animals killed 3--5 hours after injection. The distribution of LPS in rabbits was found to be dose-indpendent and only minimally changed by prior depletion of C3. In addition, the tissue distribution and cellular localization of LPS in monkeys was similar to that we have reported previously for R595 LPS in NC rabbits and was not substantially changed by prior CoF treatment. These results indicate that binding of C3 to intravenously injected LPS is not required for the initial rapid disappearance from blood. Further, the uptake of LPS by cellular targets, notably the hepatic macrophages (Kupffer cells), is not altered by in vivo decomplementation.

Full text

PDF
245

Images in this article

Selected References

These references are in PubMed. This may not be the complete list of references from this article.

  1. BRAUDE A. I., CAREY F. J., ZALESKY M. Studies with radioactive endotoxin. II. Correlation of physiologic effects with distribution of radioactivity in rabbits injected with radioactive sodium chromate. J Clin Invest. 1955 Jun;34(6):858–866. doi: 10.1172/JCI103141. [DOI] [PMC free article] [PubMed] [Google Scholar]
  2. BRUNNING R. D., WOOLFREY B. F., SCHRADER W. H. STUDIES WITH TRITIATED ENDOTOXIN. II. ENDOTOXIN LOCALIZATION IN THE FORMED ELEMENTS OF THE BLOOD. Am J Pathol. 1964 Mar;44:401–409. [PMC free article] [PubMed] [Google Scholar]
  3. Ballow M., Cochrane C. G. Two anticomplementary factors in cobra venom: hemolysis of guinea pig erythrocytes by one of them. J Immunol. 1969 Nov;103(5):944–952. [PubMed] [Google Scholar]
  4. CARO L. G., VAN TUBERGEN R. P., KOLB J. A. High-resolution autoradiography. I. Methods. J Cell Biol. 1962 Nov;15:173–188. doi: 10.1083/jcb.15.2.173. [DOI] [PMC free article] [PubMed] [Google Scholar]
  5. GILBERT R. P. Mechanisms of the hemodynamic effects of endotoxin. Physiol Rev. 1960 Apr;40:245–279. doi: 10.1152/physrev.1960.40.2.245. [DOI] [PubMed] [Google Scholar]
  6. GILBERT V. E., BRAUDE A. I. Reduction of serum complement in rabbits after injection of endotoxin. J Exp Med. 1962 Oct 1;116:477–490. doi: 10.1084/jem.116.4.477. [DOI] [PMC free article] [PubMed] [Google Scholar]
  7. Galanos C., Lüderitz O. The role of the physical state of lipopolysaccharides in the interaction with complement. High molecular weight as prerequisite for the expression of anti-complementary activity. Eur J Biochem. 1976 Jun 1;65(2):403–408. doi: 10.1111/j.1432-1033.1976.tb10354.x. [DOI] [PubMed] [Google Scholar]
  8. Galanos C., Lüderitz O., Westphal O. A new method for the extraction of R lipopolysaccharides. Eur J Biochem. 1969 Jun;9(2):245–249. doi: 10.1111/j.1432-1033.1969.tb00601.x. [DOI] [PubMed] [Google Scholar]
  9. Guenter C. A., Fiorica V., Hinshaw L. B. Cardiorespiratory and metabolic responses to liver E. coli and endotoxin in the monkey. J Appl Physiol. 1969 Jun;26(6):780–786. doi: 10.1152/jappl.1969.26.6.780. [DOI] [PubMed] [Google Scholar]
  10. Götze O., Bianco C., Cohn Z. A. The induction of macrophage spreading by factor B of the properdin system. J Exp Med. 1979 Feb 1;149(2):372–386. doi: 10.1084/jem.149.2.372. [DOI] [PMC free article] [PubMed] [Google Scholar]
  11. HERRING W. B., HERION J. C., WALKER R. I., PALMER J. G. Distribution and clearance of circulating endotoxin. J Clin Invest. 1963 Jan;42:79–87. doi: 10.1172/JCI104698. [DOI] [PMC free article] [PubMed] [Google Scholar]
  12. Haeseler F., Bodel P., Atkins E. Characteristics of pyrogen production by isolated rabbit Kupffer cells in vitro. J Reticuloendothel Soc. 1977 Dec;22(6):569–581. [PubMed] [Google Scholar]
  13. Mancini G., Carbonara A. O., Heremans J. F. Immunochemical quantitation of antigens by single radial immunodiffusion. Immunochemistry. 1965 Sep;2(3):235–254. doi: 10.1016/0019-2791(65)90004-2. [DOI] [PubMed] [Google Scholar]
  14. Mathison J. C., Ulevitch R. J. The clearance, tissue distribution, and cellular localization of intravenously injected lipopolysaccharide in rabbits. J Immunol. 1979 Nov;123(5):2133–2143. [PubMed] [Google Scholar]
  15. McConahey P. J., Dixon F. J. A method of trace iodination of proteins for immunologic studies. Int Arch Allergy Appl Immunol. 1966;29(2):185–189. doi: 10.1159/000229699. [DOI] [PubMed] [Google Scholar]
  16. Morrison D. C., Kline L. F. Activation of the classical and properdin pathways of complement by bacterial lipopolysaccharides (LPS). J Immunol. 1977 Jan;118(1):362–368. [PubMed] [Google Scholar]
  17. Morrison D. C., Ulevitch R. J. The effects of bacterial endotoxins on host mediation systems. A review. Am J Pathol. 1978 Nov;93(2):526–618. [PMC free article] [PubMed] [Google Scholar]
  18. REYNOLDS E. S. The use of lead citrate at high pH as an electron-opaque stain in electron microscopy. J Cell Biol. 1963 Apr;17:208–212. doi: 10.1083/jcb.17.1.208. [DOI] [PMC free article] [PubMed] [Google Scholar]
  19. Reichgott M. J., Melmon K. L., Forsyth R. P., Greineder D. Cardiovascular and metabolic effects of whole or fractionated gram-negative bacterial endotoxin in the unanesthetized Rhesus monkey. Circ Res. 1973 Sep;33(3):346–352. doi: 10.1161/01.res.33.3.346. [DOI] [PubMed] [Google Scholar]
  20. Schorlemmer H. U., Allison A. C. Effects of activated complement components on enzyme secretion by macrophages. Immunology. 1976 Nov;31(5):781–788. [PMC free article] [PubMed] [Google Scholar]
  21. Shaw J. O., Roberts M. F., Ulevitch R. J., Henson P., Dennis E. A. Phospholipase A2 contamination of cobra venom factor preparations. Biologic role in complement-dependent in vivo reactions and inactivation with p-bromophenacyl bromide. Am J Pathol. 1978 Jun;91(3):517–530. [PMC free article] [PubMed] [Google Scholar]
  22. Tate W. J., 3rd, Douglas H., Braude A. I., Wells W. W. Protection against lethality of E. coli endotoxin with "O" antiserum. Ann N Y Acad Sci. 1966 Jun 30;133(2):746–762. doi: 10.1111/j.1749-6632.1966.tb52403.x. [DOI] [PubMed] [Google Scholar]
  23. Ulevitch R. J., Cochrane C. G., Bangs K., Herman C. M., Fletcher J. R., Rice C. L. The effect of complement depletion on bacterial lipopolysaccharide (LPS)-induced hemodynamic and hematologic changes in the Rhesus monkey. Am J Pathol. 1978 Jul;92(1):227–240. [PMC free article] [PubMed] [Google Scholar]
  24. Ulevitch R. J., Cochrane C. G., Henson P. M., Morrison D. C., Doe W. F. Mediation systems in bacterial lipopolysaccharide-induced hypotension and disseminated intravascular coagulation. I. The role of complement. J Exp Med. 1975 Dec 1;142(6):1570–1590. doi: 10.1084/jem.142.6.1570. [DOI] [PMC free article] [PubMed] [Google Scholar]
  25. Ulevitch R. J., Cochrane C. G. Role of complement in lethal bacterial lipopolysaccharide-induced hypotensive and coagulative changes. Infect Immun. 1978 Jan;19(1):204–211. doi: 10.1128/iai.19.1.204-211.1978. [DOI] [PMC free article] [PubMed] [Google Scholar]
  26. Ulevitch R. J., Johnston A. R. The modification of biophysical and endotoxic properties of bacterial lipopolysaccharides by serum. J Clin Invest. 1978 Dec;62(6):1313–1324. doi: 10.1172/JCI109252. [DOI] [PMC free article] [PubMed] [Google Scholar]
  27. Ulevitch R. J., Johnston A. R., Weinstein D. B. New function for high density lipoproteins. Their participation in intravascular reactions of bacterial lipopolysaccharides. J Clin Invest. 1979 Nov;64(5):1516–1524. doi: 10.1172/JCI109610. [DOI] [PMC free article] [PubMed] [Google Scholar]
  28. Ulevitch R. J. The preparation and characterization of a radioiodinated bacterial lipopolysaccharide. Immunochemistry. 1978 Mar;15(3):157–164. doi: 10.1016/0161-5890(78)90144-x. [DOI] [PubMed] [Google Scholar]
  29. Wyler F., Forsyth R. P., Nies A. S., Neutze J. M., Melmon K. L. Endotoxin-induced regional circulatory changes in the unanesthetized monkey. Circ Res. 1969 Jun;24(6):777–786. doi: 10.1161/01.res.24.6.777. [DOI] [PubMed] [Google Scholar]

Articles from The American Journal of Pathology are provided here courtesy of American Society for Investigative Pathology

RESOURCES