Skip to main content
Journal of Virology logoLink to Journal of Virology
. 1996 Jul;70(7):4329–4337. doi: 10.1128/jvi.70.7.4329-4337.1996

Therapeutic effect of Gag-nuclease fusion protein on retrovirus-infected cell cultures.

G Schumann 1, L Qin 1, A Rein 1, G Natsoulis 1, J D Boeke 1
PMCID: PMC190365  PMID: 8676455

Abstract

Capsid-targeted viral inactivation is a novel protein-based strategy for the treatment of viral infections. Virus particles are inactivated by targeting toxic fusion proteins to virions, where they destroy viral components from within. We have fused Staphylococcus nuclease (SN) to the C-terminal end of Moloney murine leukemia virus Gag and demonstrated that expression of this fusion protein in chronically infected chicken embryo fibroblasts resulted in its incorporation into virions and subsequent inactivation of the virus particles by degradation of viral RNA. Release of particles incorporating Gag-SN fusion proteins into the extracellular milieu activates the nuclease and results in destruction of the virion from within. By comparing the effects of incorporated SN and SN*, an enzymatically inactive missense mutant form of SN, on the infectivity of virus particles, we have clearly demonstrated that nucleolytic activity is the antiviral mechanism. Expression of Gag-SN fusion proteins as a therapeutic agent causes a stable reduction of infectious titers by 20- to 60-fold. The antiviral effect of capsid-targeted viral inactivation in our model system, using both prophylactic and therapeutic approaches, suggests that a similar anti-human immunodeficiency virus strategy might be successful.

Full Text

The Full Text of this article is available as a PDF (542.6 KB).

Selected References

These references are in PubMed. This may not be the complete list of references from this article.

  1. Aldovini A., Young R. A. Mutations of RNA and protein sequences involved in human immunodeficiency virus type 1 packaging result in production of noninfectious virus. J Virol. 1990 May;64(5):1920–1926. doi: 10.1128/jvi.64.5.1920-1926.1990. [DOI] [PMC free article] [PubMed] [Google Scholar]
  2. Babé L. M., Pichuantes S., Craik C. S. Inhibition of HIV protease activity by heterodimer formation. Biochemistry. 1991 Jan 8;30(1):106–111. doi: 10.1021/bi00215a016. [DOI] [PubMed] [Google Scholar]
  3. Baltimore D. Gene therapy. Intracellular immunization. Nature. 1988 Sep 29;335(6189):395–396. doi: 10.1038/335395a0. [DOI] [PubMed] [Google Scholar]
  4. Bassin R. H., Tuttle N., Fischinger P. J. Rapid cell culture assay technic for murine leukaemia viruses. Nature. 1971 Feb 19;229(5286):564–566. doi: 10.1038/229564b0. [DOI] [PubMed] [Google Scholar]
  5. DiIanni C. L., Davis L. J., Holloway M. K., Herber W. K., Darke P. L., Kohl N. E., Dixon R. A. Characterization of an active single polypeptide form of the human immunodeficiency virus type 1 protease. J Biol Chem. 1990 Oct 5;265(28):17348–17354. [PubMed] [Google Scholar]
  6. Dorfman T., Luban J., Goff S. P., Haseltine W. A., Göttlinger H. G. Mapping of functionally important residues of a cysteine-histidine box in the human immunodeficiency virus type 1 nucleocapsid protein. J Virol. 1993 Oct;67(10):6159–6169. doi: 10.1128/jvi.67.10.6159-6169.1993. [DOI] [PMC free article] [PubMed] [Google Scholar]
  7. Ehrlich L. S., Agresta B. E., Carter C. A. Assembly of recombinant human immunodeficiency virus type 1 capsid protein in vitro. J Virol. 1992 Aug;66(8):4874–4883. doi: 10.1128/jvi.66.8.4874-4883.1992. [DOI] [PMC free article] [PubMed] [Google Scholar]
  8. Feinberg A. P., Vogelstein B. A technique for radiolabeling DNA restriction endonuclease fragments to high specific activity. Anal Biochem. 1983 Jul 1;132(1):6–13. doi: 10.1016/0003-2697(83)90418-9. [DOI] [PubMed] [Google Scholar]
  9. Franke E. K., Yuan H. E., Bossolt K. L., Goff S. P., Luban J. Specificity and sequence requirements for interactions between various retroviral Gag proteins. J Virol. 1994 Aug;68(8):5300–5305. doi: 10.1128/jvi.68.8.5300-5305.1994. [DOI] [PMC free article] [PubMed] [Google Scholar]
  10. Fu W., Rein A. Maturation of dimeric viral RNA of Moloney murine leukemia virus. J Virol. 1993 Sep;67(9):5443–5449. doi: 10.1128/jvi.67.9.5443-5449.1993. [DOI] [PMC free article] [PubMed] [Google Scholar]
  11. Gabriel A., Boeke J. D. Reverse transcriptase encoded by a retrotransposon from the trypanosomatid Crithidia fasciculata. Proc Natl Acad Sci U S A. 1991 Nov 1;88(21):9794–9798. doi: 10.1073/pnas.88.21.9794. [DOI] [PMC free article] [PubMed] [Google Scholar]
  12. Gilboa E., Smith C. Gene therapy for infectious diseases: the AIDS model. Trends Genet. 1994 Apr;10(4):139–144. doi: 10.1016/0168-9525(94)90216-x. [DOI] [PubMed] [Google Scholar]
  13. Gorelick R. J., Nigida S. M., Jr, Bess J. W., Jr, Arthur L. O., Henderson L. E., Rein A. Noninfectious human immunodeficiency virus type 1 mutants deficient in genomic RNA. J Virol. 1990 Jul;64(7):3207–3211. doi: 10.1128/jvi.64.7.3207-3211.1990. [DOI] [PMC free article] [PubMed] [Google Scholar]
  14. Granowitz C., Goff S. P. Substitution mutations affecting a small region of the Moloney murine leukemia virus MA gag protein block assembly and release of virion particles. Virology. 1994 Nov 15;205(1):336–344. doi: 10.1006/viro.1994.1650. [DOI] [PubMed] [Google Scholar]
  15. Hansen M., Jelinek L., Whiting S., Barklis E. Transport and assembly of gag proteins into Moloney murine leukemia virus. J Virol. 1990 Nov;64(11):5306–5316. doi: 10.1128/jvi.64.11.5306-5316.1990. [DOI] [PMC free article] [PubMed] [Google Scholar]
  16. Hughes S. H., Greenhouse J. J., Petropoulos C. J., Sutrave P. Adaptor plasmids simplify the insertion of foreign DNA into helper-independent retroviral vectors. J Virol. 1987 Oct;61(10):3004–3012. doi: 10.1128/jvi.61.10.3004-3012.1987. [DOI] [PMC free article] [PubMed] [Google Scholar]
  17. Hughes S., Kosik E. Mutagenesis of the region between env and src of the SR-A strain of Rous sarcoma virus for the purpose of constructing helper-independent vectors. Virology. 1984 Jul 15;136(1):89–99. doi: 10.1016/0042-6822(84)90250-2. [DOI] [PubMed] [Google Scholar]
  18. Jones T. A., Blaug G., Hansen M., Barklis E. Assembly of gag-beta-galactosidase proteins into retrovirus particles. J Virol. 1990 May;64(5):2265–2279. doi: 10.1128/jvi.64.5.2265-2279.1990. [DOI] [PMC free article] [PubMed] [Google Scholar]
  19. Jørgensen E. C., Pedersen F. S., Jørgensen P. Matrix protein of Akv murine leukemia virus: genetic mapping of regions essential for particle formation. J Virol. 1992 Jul;66(7):4479–4487. doi: 10.1128/jvi.66.7.4479-4487.1992. [DOI] [PMC free article] [PubMed] [Google Scholar]
  20. Khandjian E. W., Méric C. A procedure for Northern blot analysis of native RNA. Anal Biochem. 1986 Nov 15;159(1):227–232. doi: 10.1016/0003-2697(86)90332-5. [DOI] [PubMed] [Google Scholar]
  21. Kim H. S., Liao T. H. Isoelectric focusing of multiple forms of DNase in thin layers of polyacrylamide gel and detection of enzymatic activity with a zymogram method following separation. Anal Biochem. 1982 Jan 1;119(1):96–101. doi: 10.1016/0003-2697(82)90671-6. [DOI] [PubMed] [Google Scholar]
  22. Luban J., Alin K. B., Bossolt K. L., Humaran T., Goff S. P. Genetic assay for multimerization of retroviral gag polyproteins. J Virol. 1992 Aug;66(8):5157–5160. doi: 10.1128/jvi.66.8.5157-5160.1992. [DOI] [PMC free article] [PubMed] [Google Scholar]
  23. Luban J., Bossolt K. L., Franke E. K., Kalpana G. V., Goff S. P. Human immunodeficiency virus type 1 Gag protein binds to cyclophilins A and B. Cell. 1993 Jun 18;73(6):1067–1078. doi: 10.1016/0092-8674(93)90637-6. [DOI] [PubMed] [Google Scholar]
  24. Mammano F., Ohagen A., Höglund S., Göttlinger H. G. Role of the major homology region of human immunodeficiency virus type 1 in virion morphogenesis. J Virol. 1994 Aug;68(8):4927–4936. doi: 10.1128/jvi.68.8.4927-4936.1994. [DOI] [PMC free article] [PubMed] [Google Scholar]
  25. Natsoulis G., Boeke J. D. New antiviral strategy using capsid-nuclease fusion proteins. Nature. 1991 Aug 15;352(6336):632–635. doi: 10.1038/352632a0. [DOI] [PubMed] [Google Scholar]
  26. Natsoulis G., Seshaiah P., Federspiel M. J., Rein A., Hughes S. H., Boeke J. D. Targeting of a nuclease to murine leukemia virus capsids inhibits viral multiplication. Proc Natl Acad Sci U S A. 1995 Jan 17;92(2):364–368. doi: 10.1073/pnas.92.2.364. [DOI] [PMC free article] [PubMed] [Google Scholar]
  27. Ott D. E., Keller J., Sill K., Rein A. Phenotypes of murine leukemia virus-induced tumors: influence of 3' viral coding sequences. J Virol. 1992 Oct;66(10):6107–6116. doi: 10.1128/jvi.66.10.6107-6116.1992. [DOI] [PMC free article] [PubMed] [Google Scholar]
  28. Ott D., Friedrich R., Rein A. Sequence analysis of amphotropic and 10A1 murine leukemia viruses: close relationship to mink cell focus-inducing viruses. J Virol. 1990 Feb;64(2):757–766. doi: 10.1128/jvi.64.2.757-766.1990. [DOI] [PMC free article] [PubMed] [Google Scholar]
  29. Petropoulos C. J., Hughes S. H. Replication-competent retrovirus vectors for the transfer and expression of gene cassettes in avian cells. J Virol. 1991 Jul;65(7):3728–3737. doi: 10.1128/jvi.65.7.3728-3737.1991. [DOI] [PMC free article] [PubMed] [Google Scholar]
  30. Rosenthal A. L., Lacks S. A. Nuclease detection in SDS-polyacrylamide gel electrophoresis. Anal Biochem. 1977 May 15;80(1):76–90. doi: 10.1016/0003-2697(77)90627-3. [DOI] [PubMed] [Google Scholar]
  31. Schwartz S., Felber B. K., Pavlakis G. N. Distinct RNA sequences in the gag region of human immunodeficiency virus type 1 decrease RNA stability and inhibit expression in the absence of Rev protein. J Virol. 1992 Jan;66(1):150–159. doi: 10.1128/jvi.66.1.150-159.1992. [DOI] [PMC free article] [PubMed] [Google Scholar]
  32. Towbin H., Staehelin T., Gordon J. Electrophoretic transfer of proteins from polyacrylamide gels to nitrocellulose sheets: procedure and some applications. Proc Natl Acad Sci U S A. 1979 Sep;76(9):4350–4354. doi: 10.1073/pnas.76.9.4350. [DOI] [PMC free article] [PubMed] [Google Scholar]
  33. Tucker P. W., Hazen E. E., Jr, Cotton F. A. Staphylococcal nuclease reviewed: a prototypic study in contemporary enzymology. III. Correlation of the three-dimensional structure with the mechanisms of enzymatic action. Mol Cell Biochem. 1979 Jan 26;23(2):67–86. doi: 10.1007/BF00226229. [DOI] [PubMed] [Google Scholar]
  34. Wang C. T., Stegeman-Olsen J., Zhang Y., Barklis E. Assembly of HIV GAG-B-galactosidase fusion proteins into virus particles. Virology. 1994 May 1;200(2):524–534. doi: 10.1006/viro.1994.1215. [DOI] [PubMed] [Google Scholar]
  35. Weber D. J., Meeker A. K., Mildvan A. S. Interactions of the acid and base catalysts on staphylococcal nuclease as studied in a double mutant. Biochemistry. 1991 Jun 25;30(25):6103–6114. doi: 10.1021/bi00239a004. [DOI] [PubMed] [Google Scholar]
  36. Weldon R. A., Jr, Erdie C. R., Oliver M. G., Wills J. W. Incorporation of chimeric gag protein into retroviral particles. J Virol. 1990 Sep;64(9):4169–4179. doi: 10.1128/jvi.64.9.4169-4179.1990. [DOI] [PMC free article] [PubMed] [Google Scholar]
  37. Wills J. W., Craven R. C. Form, function, and use of retroviral gag proteins. AIDS. 1991 Jun;5(6):639–654. doi: 10.1097/00002030-199106000-00002. [DOI] [PubMed] [Google Scholar]
  38. Wu X., Liu H., Xiao H., Kim J., Seshaiah P., Natsoulis G., Boeke J. D., Hahn B. H., Kappes J. C. Targeting foreign proteins to human immunodeficiency virus particles via fusion with Vpr and Vpx. J Virol. 1995 Jun;69(6):3389–3398. doi: 10.1128/jvi.69.6.3389-3398.1995. [DOI] [PMC free article] [PubMed] [Google Scholar]
  39. Yasuda T., Mizuta K., Ikehara Y., Kishi K. Genetic analysis of human deoxyribonuclease I by immunoblotting and the zymogram method following isoelectric focusing. Anal Biochem. 1989 Nov 15;183(1):84–88. doi: 10.1016/0003-2697(89)90175-9. [DOI] [PubMed] [Google Scholar]

Articles from Journal of Virology are provided here courtesy of American Society for Microbiology (ASM)

RESOURCES