Abstract
The biologic changes occurring in severely ischemic myocytes in vivo as the affected cells pass through the phase of reversible to the phase of lethal or irreversible injury are reviewed with special emphasis on the effect of ischemia on the production and utilization of highenergy phosphate, the destruction of the adenine nucleotide pool, and the appearance of signs of damage to the plasma membrane of the sarcolemma. Evidence is presented that indicates that the events occurring in severe ischemia in vivo are essentially identical to those found in total ischemia in vitro except that the biologic changes of ischemia develop more slowly in total ischemia in vitro than in severe ischemia in vivo. The slower time course of injury, together with the uniformity of injury provided by total ischemia in vitro, may allow for more precise identification of potential lethal cellular events in ischemic injury. The production of highenergy phosphates (HEP) from anaerobic glycolysis have been estimated in both in vivo and in vitro ischemia by the measurement of lactate accumulation, and total HEP utilization has been estimated from the depletion of stores of preformed HEP. The results show that between 80% and 90% of the HEP utilized by ischemic dog left ventricle is produced by anaerobic glycolysis. The onset of irreversibility is associated with marked depletion of the HEP and adenine nucleotide pools of the tissue and the cessation of energy production via glycolysis. The cessation of anaerobic glycolysis may be caused by the low sarcoplasmic, adenosine triphosphate (ATP) concentration of the dying myocyte. In addition to the foregoing changes, irreversibly injured tissue exhibits both ultrastructural and functional evidence of disruption of the plasmalemma of the sarcolemma. The possible relationships, causal and otherwise, between severe HEP depletion and membrane damage are discussed. Both HEP depletion (ATP < 3-8% of control) and membrane damage are considered to be objective signs of the presence of irreversible myocardial ischemic injury. However, at the present time, there is no proof that these changes are causally related either to each other or to cell death in severe in vivo ischemia.
Full text
PDF














Images in this article
Selected References
These references are in PubMed. This may not be the complete list of references from this article.
- Allison T. B., Ramey C. A., Holsinger J. W., Jr Transmural gradients of left ventricular tissue metabolites after circumflex artery ligation in dogs. J Mol Cell Cardiol. 1977 Oct;9(10):837–852. doi: 10.1016/s0022-2828(77)80060-6. [DOI] [PubMed] [Google Scholar]
- BENSON E. S., EVANS G. T., HALLAWAYBE, PHIBBS C., FREIER E. F. Myocardial creatine phosphate and nucleotides in aoxic cardiac arrest and recovery. Am J Physiol. 1961 Oct;201:678–693. doi: 10.1152/ajplegacy.1961.201.4.687. [DOI] [PubMed] [Google Scholar]
- Berne R. M., Rubio R. Adenine nucleotide metabolism in the heart. Circ Res. 1974 Sep;35 (Suppl 3):109–120. [PubMed] [Google Scholar]
- Braasch W., Gudbjarnason S., Puri P. S., Ravens K. G., Bing R. J. Early changes in energy metabolism in the myocardium following acute coronary artery occlusion in anesthetized dogs. Circ Res. 1968 Sep;23(3):429–438. doi: 10.1161/01.res.23.3.429. [DOI] [PubMed] [Google Scholar]
- Burton K. P., Hagler H. K., Templeton G. H., Willerson J. T., Buja L. M. Lanthanum probe studies of cellular pathophysiology induced by hypoxia in isolated cardiac muscle. J Clin Invest. 1977 Dec;60(6):1289–1302. doi: 10.1172/JCI108888. [DOI] [PMC free article] [PubMed] [Google Scholar]
- CONN H. L., Jr, WOOD J. C., MORALES G. S. Rate of change in myocardial glycogen and lactic acid following arrest of coronary circulation. Circ Res. 1959 Sep;7:721–727. doi: 10.1161/01.res.7.5.721. [DOI] [PubMed] [Google Scholar]
- Chien K. R., Abrams J., Pfau R. G., Farber J. L. Prevention by chlorpromazine of ischemic liver cell death. Am J Pathol. 1977 Sep;88(3):539–557. [PMC free article] [PubMed] [Google Scholar]
- Chien K. R., Abrams J., Serroni A., Martin J. T., Farber J. L. Accelerated phospholipid degradation and associated membrane dysfunction in irreversible, ischemic liver cell injury. J Biol Chem. 1978 Jul 10;253(13):4809–4817. [PubMed] [Google Scholar]
- Corr P. B., Cain M. E., Witkowski F. X., Price D. A., Sobel B. E. Potential arrhythmogenic electrophysiological derangements in canine Purkinje fibers induced by lysophosphoglycerides. Circ Res. 1979 Jun;44(6):822–832. doi: 10.1161/01.res.44.6.822. [DOI] [PubMed] [Google Scholar]
- El-Mofty S. K., Scrutton M. C., Serroni A., Nicolini C., Farber J. L. Early, reversible plasma membrane injury in galactosamine-induced liver cell death. Am J Pathol. 1975 Jun;79(3):579–596. [PMC free article] [PubMed] [Google Scholar]
- Farber E. ATP and cell integrity. Fed Proc. 1973 Apr;32(4):1534–1539. [PubMed] [Google Scholar]
- Fleckenstein A., Kanke J., Döring H. J., Leder O. Key role of Ca in the production of noncoronarogenic myocardial necroses. Recent Adv Stud Cardiac Struct Metab. 1975;6:21–32. [PubMed] [Google Scholar]
- Frei E., Zahler P. Phospholipase A2 from sheep erythrocyte membranes. Ca2+ dependence and localization. Biochim Biophys Acta. 1979 Feb 2;550(3):450–463. doi: 10.1016/0005-2736(79)90148-2. [DOI] [PubMed] [Google Scholar]
- Ganote C. E., Jennings R. B., Hill M. L., Grochowski E. Experimental myocardial ischemic injury. II. Effect of in vivo ischemia on dog heart slice function in vitro. J Mol Cell Cardiol. 1976 Mar;8(3):189–204. doi: 10.1016/0022-2828(76)90036-5. [DOI] [PubMed] [Google Scholar]
- Ganote C. E., Seabra-Gomes R., Nayler W. G., Jennings R. B. Irreversible myocardial injury in anoxic perfused rat hearts. Am J Pathol. 1975 Sep;80(3):419–450. [PMC free article] [PubMed] [Google Scholar]
- Gazitt Y., Loyter A., Reichler Y., Ohad I. Correlation between changes in the membrane organization and susceptibility to phospholipase C attack induced by ATP depletion of rat erythrocytes. Biochim Biophys Acta. 1976 Feb 6;419(3):479–492. doi: 10.1016/0005-2736(76)90260-1. [DOI] [PubMed] [Google Scholar]
- Gerlach E., Marko P., Zimmer H. G., Pechan I., Trendelenburg C. Different response of adenine nucleotide synthesis de novo in kidney and brain during aerobic recovery from anoxia and ischemia. Experientia. 1971 Aug;27(8):876–878. doi: 10.1007/BF02135716. [DOI] [PubMed] [Google Scholar]
- Grankvist K., Marklund S., Sehlin J., Täljedal I. B. Superoxide dismutase, catalase and scavengers of hydroxyl radical protect against the toxic action of alloxan on pancreatic islet cells in vitro. Biochem J. 1979 Jul 15;182(1):17–25. doi: 10.1042/bj1820017. [DOI] [PMC free article] [PubMed] [Google Scholar]
- HERDSON P. B., SOMMERS H. M., JENNINGS R. B. A COMPARATIVE STUDY OF THE FINE STRUCTURE OF NORMAL AND ISCHEMIC DOG MYOCARDIUM WITH SPECIAL REFERENCE TO EARLY CHANGES FOLLOWING TEMPORARY OCCLUSION OF A CORONARY ARTERY. Am J Pathol. 1965 Mar;46:367–386. [PMC free article] [PubMed] [Google Scholar]
- Herdson P. B., Kaltenbach J. P., Jennings R. B. Fine structural and biochemical changes in dog myocardium during autolysis. Am J Pathol. 1969 Dec;57(3):539–557. [PMC free article] [PubMed] [Google Scholar]
- Hochachka P. W., Owen T. G., Allen J. F., Whittow G. C. Multiple end products of anaerobiosis in diving vertebrates. Comp Biochem Physiol B. 1975 Jan 15;50(1):17–22. doi: 10.1016/0305-0491(75)90292-8. [DOI] [PubMed] [Google Scholar]
- JENNINGS R. B., SOMMERS H. M., SMYTH G. A., FLACK H. A., LINN H. Myocardial necrosis induced by temporary occlusion of a coronary artery in the dog. Arch Pathol. 1960 Jul;70:68–78. [PubMed] [Google Scholar]
- JENNINGS R. B., WARTMAN W. B. Reactions of the myocardium to obstruction of the coronary arteries. Med Clin North Am. 1957 Jan;41(1):3–15. doi: 10.1016/s0025-7125(16)34461-3. [DOI] [PubMed] [Google Scholar]
- Jennings R. B., Ganote C. E., Reimer K. A. Ischemic tissue injury. Am J Pathol. 1975 Oct;81(1):179–198. [PMC free article] [PubMed] [Google Scholar]
- Jennings R. B., Ganote C. E. Structural changes in myocardium during acute ischemia. Circ Res. 1974 Sep;35 (Suppl 3):156–172. [PubMed] [Google Scholar]
- Jennings R. B., Hawkins H. K., Lowe J. E., Hill M. L., Klotman S., Reimer K. A. Relation between high energy phosphate and lethal injury in myocardial ischemia in the dog. Am J Pathol. 1978 Jul;92(1):187–214. [PMC free article] [PubMed] [Google Scholar]
- Jennings R. B., Sommers H. M., Herdson P. B., Kaltenbach J. P. Ischemic injury of myocardium. Ann N Y Acad Sci. 1969 Jan 31;156(1):61–78. doi: 10.1111/j.1749-6632.1969.tb16718.x. [DOI] [PubMed] [Google Scholar]
- Jones C. E., Thomas J. X., Parker J. C., Parker R. E. Acute changes in high energy phosphates, nucleotide derivatives, and contractile force in ischaemic and nonischaemic canine myocardium following coronary occlusion. Cardiovasc Res. 1976 May;10(3):275–282. doi: 10.1093/cvr/10.3.275. [DOI] [PubMed] [Google Scholar]
- KALTENBACH J. P., JENNINGS R. B. Metabolism of ischemic cardiac muscle. Circ Res. 1960 Jan;8:207–213. doi: 10.1161/01.res.8.1.207. [DOI] [PubMed] [Google Scholar]
- Kleihues P., Hossmann K. A., Pegg A. E., Kobayashi K., Zimmermann V. Resuscitation of the monkey brain after one hour complete ischemia. III. Indications of metabolic recovery. Brain Res. 1975 Sep 12;95(1):61–73. doi: 10.1016/0006-8993(75)90207-3. [DOI] [PubMed] [Google Scholar]
- Kleihues P., Kobayashi K., Hossmann K. A. Purine nucleotide metabolism in the cat brain after one hour of complete ischemia. J Neurochem. 1974 Aug;23(2):417–425. doi: 10.1111/j.1471-4159.1974.tb04374.x. [DOI] [PubMed] [Google Scholar]
- Kübler W., Spieckermann P. G. Regulation of glycolysis in the ischemic and the anoxic myocardium. J Mol Cell Cardiol. 1970 Dec;1(4):351–377. doi: 10.1016/0022-2828(70)90034-9. [DOI] [PubMed] [Google Scholar]
- Lowe J. E., Jennings R. B., Reimer K. A. Cardiac rigor mortis in dogs. J Mol Cell Cardiol. 1979 Oct;11(10):1017–1031. doi: 10.1016/0022-2828(79)90392-4. [DOI] [PubMed] [Google Scholar]
- MORGAN H. E., HENDERSON M. J., REGEN D. M., PARK C. R. Regulation of glucose uptake in heart muscle from normal and alloxan-diabetic rats: the effects of insulin, growth hormone, cortisone, and anoxia. Ann N Y Acad Sci. 1959 Sep 25;82:387–402. doi: 10.1111/j.1749-6632.1959.tb44920.x. [DOI] [PubMed] [Google Scholar]
- Mayer S. E., Williams B. J., Smith J. M. Adrenergic mechanisms in cardiac glycogen metabolism. Ann N Y Acad Sci. 1967 Feb 10;139(3):686–702. doi: 10.1111/j.1749-6632.1967.tb41238.x. [DOI] [PubMed] [Google Scholar]
- Nayler W. G., Poole-Wilson P. A., Williams A. Hypoxia and calcium. J Mol Cell Cardiol. 1979 Jul;11(7):683–706. doi: 10.1016/0022-2828(79)90381-x. [DOI] [PubMed] [Google Scholar]
- Neely J. R., Liedtke A. J., Whitmer J. T., Rovetto M. J. Relationship between coronary flow and adenosine triphosphate production from glycolysis and oxidative metabolism. Recent Adv Stud Cardiac Struct Metab. 1975;8:301–321. [PubMed] [Google Scholar]
- Neely J. R., Rovetto M. J., Whitmer J. T. Rate-limiting steps of carbohydrate and fatty acid metabolism in ischemic hearts. Acta Med Scand Suppl. 1976;587:9–15. doi: 10.1111/j.0954-6820.1976.tb05861.x. [DOI] [PubMed] [Google Scholar]
- Parks J. M., Shay J., Ames A. Cell volume and permeability of oxygen-and glucose-deprived retina in vitro. Arch Neurol. 1976 Oct;33(10):709–714. doi: 10.1001/archneur.1976.00500100043014. [DOI] [PubMed] [Google Scholar]
- Penney D. G., Cascarano J. Anaerobic rat heart. Effects of glucose and tricarboxylic acid-cycle metabolites on metabolism and physiological performance. Biochem J. 1970 Jun;118(2):221–227. doi: 10.1042/bj1180221. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Recknagel R. O. Carbon tetrachloride hepatotoxicity. Pharmacol Rev. 1967 Jun;19(2):145–208. [PubMed] [Google Scholar]
- Rovetto M. J., Lamberton W. F., Neely J. R. Mechanisms of glycolytic inhibition in ischemic rat hearts. Circ Res. 1975 Dec;37(6):742–751. doi: 10.1161/01.res.37.6.742. [DOI] [PubMed] [Google Scholar]
- Ruigrok T. J., Boink A. B., Spies F., Blok F. J., Maas A. H., Zimmerman A. N. Energy dependence of the calcium paradox. J Mol Cell Cardiol. 1978 Nov;10(11):991–1002. doi: 10.1016/0022-2828(78)90395-4. [DOI] [PubMed] [Google Scholar]
- SAYEN J. J., SHELDON W. F., PEIRCE G., KUO P. T. Polarographic oxygen, the epicardial electrocardiogram and muscle contraction in experimental acute regional ischemia of the left ventricle. Circ Res. 1958 Nov;6(6):779–798. doi: 10.1161/01.res.6.6.779. [DOI] [PubMed] [Google Scholar]
- Scheuer J., Stezoski S. W. Protective role of increased myocardial glycogen stores in cardiac anoxia in the rat. Circ Res. 1970 Nov;27(5):835–849. doi: 10.1161/01.res.27.5.835. [DOI] [PubMed] [Google Scholar]
- Shay J., Ames A. Retina subjected to components of ischemia in vitro. Selective vulnerability and minimum lethal exposure of neurons and glia to oxygen and/or glucose deprivation and to loss of exchange with incubating medium. Arch Neurol. 1976 Oct;33(10):715–721. doi: 10.1001/archneur.1976.00500100049015. [DOI] [PubMed] [Google Scholar]
- Shen A. C., Jennings R. B. Kinetics of calcium accumulation in acute myocardial ischemic injury. Am J Pathol. 1972 Jun;67(3):441–452. [PMC free article] [PubMed] [Google Scholar]
- Shen A. C., Jennings R. B. Myocardial calcium and magnesium in acute ischemic injury. Am J Pathol. 1972 Jun;67(3):417–440. [PMC free article] [PubMed] [Google Scholar]
- Shine K. I., Douglas A. M., Ricchiuti N. V. Calcium, strontium, and barium movements during ischemia and reperfusion in rabbit ventricle. Implications for myocardial preservation. Circ Res. 1978 Nov;43(5):712–720. doi: 10.1161/01.res.43.5.712. [DOI] [PubMed] [Google Scholar]
- Sobel B. E., Corr P. B., Robison A. K., Goldstein R. A., Witkowski F. X., Klein M. S. Accumulation of lysophosphoglycerides with arrhythmogenic properties in ischemic myocardium. J Clin Invest. 1978 Sep;62(3):546–553. doi: 10.1172/JCI109159. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Weglicki W. B., Waite M., Sisson P., Shohet S. B. Myocardial phospholipase A of microsomal and mitochondrial fractions. Biochim Biophys Acta. 1971 May 4;231(3):512–519. doi: 10.1016/0005-2760(71)90119-6. [DOI] [PubMed] [Google Scholar]
- Whalen D. A., Jr, Hamilton D. G., Ganote C. E., Jennings R. B. Effect of a transient period of ischemia on myocardial cells. I. Effects on cell volume regulation. Am J Pathol. 1974 Mar;74(3):381–397. [PMC free article] [PubMed] [Google Scholar]
- Wilkinson J. H., Robinson J. M. Effect of energy-rich compounds on release of intracellular enzymes from human leukocytes and rat lymphocytes. Clin Chem. 1974 Oct;20(10):1331–1336. [PubMed] [Google Scholar]
- Williamson J. R. Glycolytic control mechanisms. II. Kinetics of intermediate changes during the aerobic-anoxic transition in perfused rat heart. J Biol Chem. 1966 Nov 10;241(21):5026–5036. [PubMed] [Google Scholar]
- Williamson J. R., Safer B., Rich T., Schaffer S., Kobayashi K. Effects of acidosis on myocardial contractility and metabolism. Acta Med Scand Suppl. 1976;587:95–112. doi: 10.1111/j.0954-6820.1976.tb05871.x. [DOI] [PubMed] [Google Scholar]
- Wollenberger A., Krause E. G. Metabolic control characteristics of the acutely ischemic myocardium. Am J Cardiol. 1968 Sep;22(3):349–359. doi: 10.1016/0002-9149(68)90119-7. [DOI] [PubMed] [Google Scholar]