Skip to main content
Journal of Virology logoLink to Journal of Virology
. 1996 Jul;70(7):4451–4456. doi: 10.1128/jvi.70.7.4451-4456.1996

A role for urokinase-type plasminogen activator in human immunodeficiency virus type 1 infection of macrophages.

M A Handley 1, R T Steigbigel 1, S A Morrison 1
PMCID: PMC190379  PMID: 8676469

Abstract

Urokinase-type plasminogen activator (uPA), a proteinase which activates plasminogen by cleaving at -CPGR(arrow downward)V-, was shown to cleave the V3 loop in recombinant gp120 of human immunodeficiency virus type 1 (HIV-1) IIIB and MN strains, as well as a synthetic, cyclized peptide representing the clade B consensus sequence of V3. Proteolysis occurred at the homologous -GPGR(arrow downward)A-, an important neutralizing determinant of HIV-1. It required soluble CD4 and was prevented by inhibitors of uPA but not by inhibitors of likely contaminating plasma proteinases. It was accelerated by heparin, a known cofactor for plasminogen activation. In immune capture experiments, tight binding of uPA to viral particles, which did not depend on CD4, was also demonstrated. Active site-directed inhibitors or uPA diminished this binding, as did a neutralizing antibody to V3. Addition of exogenous uPA to the laboratory-adapted IIIB strain of HIV-1, the macrophage-tropic field strains JR-CSF and SF-162, or a fresh patient isolate of indeterminate tropism, followed by infection of macrophages with the various treated viruses, resulted in severalfold increases in subsequent viral replication, as judged by yields of reverse transcriptase activity and p24 antigen, as well as incorporation, as judged by PCR in situ. These responses were reversible by inhibitors or antibodies targeting the proteinase active site or the V3 loop. We propose that uPA, a transcriptionally regulated proteinase which is upregulated when macrophages are HIV infected, can be bound and utilized by the virus to aid in fusion and may be an endogenous component that is critical to the infection of macrophages by HIV-1.

Full Text

The Full Text of this article is available as a PDF (414.9 KB).

Selected References

These references are in PubMed. This may not be the complete list of references from this article.

  1. Andersen K. B., Skov H. Retrovirus-induced cell fusion is enhanced by protease treatment. J Gen Virol. 1989 Jul;70(Pt 7):1921–1927. doi: 10.1099/0022-1317-70-7-1921. [DOI] [PubMed] [Google Scholar]
  2. Anderson E. D., Thomas L., Hayflick J. S., Thomas G. Inhibition of HIV-1 gp160-dependent membrane fusion by a furin-directed alpha 1-antitrypsin variant. J Biol Chem. 1993 Nov 25;268(33):24887–24891. [PubMed] [Google Scholar]
  3. Avril L. E., Di Martino-Ferrer M., Pignede G., Séman M., Gauthier F. Identification of the U-937 membrane-associated proteinase interacting with the V3 loop of HIV-1 gp120 as cathepsin G. FEBS Lett. 1994 May 23;345(1):81–86. doi: 10.1016/0014-5793(94)00410-2. [DOI] [PubMed] [Google Scholar]
  4. Berger E. A., Sisler J. R., Earl P. L. Human immunodeficiency virus type 1 envelope glycoprotein molecules containing membrane fusion-impairing mutations in the V3 region efficiently undergo soluble CD4-stimulated gp120 release. J Virol. 1992 Oct;66(10):6208–6212. doi: 10.1128/jvi.66.10.6208-6212.1992. [DOI] [PMC free article] [PubMed] [Google Scholar]
  5. Böyum A. Isolation of mononuclear cells and granulocytes from human blood. Isolation of monuclear cells by one centrifugation, and of granulocytes by combining centrifugation and sedimentation at 1 g. Scand J Clin Lab Invest Suppl. 1968;97:77–89. [PubMed] [Google Scholar]
  6. Cheng-Mayer C., Levy J. A. Distinct biological and serological properties of human immunodeficiency viruses from the brain. Ann Neurol. 1988;23 (Suppl):S58–S61. doi: 10.1002/ana.410230716. [DOI] [PubMed] [Google Scholar]
  7. Clements G. J., Price-Jones M. J., Stephens P. E., Sutton C., Schulz T. F., Clapham P. R., McKeating J. A., McClure M. O., Thomson S., Marsh M. The V3 loops of the HIV-1 and HIV-2 surface glycoproteins contain proteolytic cleavage sites: a possible function in viral fusion? AIDS Res Hum Retroviruses. 1991 Jan;7(1):3–16. doi: 10.1089/aid.1991.7.3. [DOI] [PubMed] [Google Scholar]
  8. Decroly E., Vandenbranden M., Ruysschaert J. M., Cogniaux J., Jacob G. S., Howard S. C., Marshall G., Kompelli A., Basak A., Jean F. The convertases furin and PC1 can both cleave the human immunodeficiency virus (HIV)-1 envelope glycoprotein gp160 into gp120 (HIV-1 SU) and gp41 (HIV-I TM). J Biol Chem. 1994 Apr 22;269(16):12240–12247. [PubMed] [Google Scholar]
  9. Durda P. J., Bacheler L., Clapham P., Jenoski A. M., Leece B., Matthews T. J., McKnight A., Pomerantz R., Rayner M., Weinhold K. J. HIV-1 neutralizing monoclonal antibodies induced by a synthetic peptide. AIDS Res Hum Retroviruses. 1990 Sep;6(9):1115–1123. doi: 10.1089/aid.1990.6.1115. [DOI] [PubMed] [Google Scholar]
  10. Ellis V., Behrendt N., Danø K. Plasminogen activation by receptor-bound urokinase. A kinetic study with both cell-associated and isolated receptor. J Biol Chem. 1991 Jul 5;266(19):12752–12758. [PubMed] [Google Scholar]
  11. Freed E. O., Delwart E. L., Buchschacher G. L., Jr, Panganiban A. T. A mutation in the human immunodeficiency virus type 1 transmembrane glycoprotein gp41 dominantly interferes with fusion and infectivity. Proc Natl Acad Sci U S A. 1992 Jan 1;89(1):70–74. doi: 10.1073/pnas.89.1.70. [DOI] [PMC free article] [PubMed] [Google Scholar]
  12. Freed E. O., Myers D. J., Risser R. Identification of the principal neutralizing determinant of human immunodeficiency virus type 1 as a fusion domain. J Virol. 1991 Jan;65(1):190–194. doi: 10.1128/jvi.65.1.190-194.1991. [DOI] [PMC free article] [PubMed] [Google Scholar]
  13. Ghiara J. B., Stura E. A., Stanfield R. L., Profy A. T., Wilson I. A. Crystal structure of the principal neutralization site of HIV-1. Science. 1994 Apr 1;264(5155):82–85. doi: 10.1126/science.7511253. [DOI] [PubMed] [Google Scholar]
  14. Hamilton J. A., Vairo G., Knight K. R., Cocks B. G. Activation and proliferation signals in murine macrophages. Biochemical signals controlling the regulation of macrophage urokinase-type plasminogen activator activity by colony-stimulating factors and other agents. Blood. 1991 Feb 1;77(3):616–627. [PubMed] [Google Scholar]
  15. Harvima I. T., Harvima R. J., Nilsson G., Ivanoff L., Schwartz L. B. Separation and partial characterization of proteinases with substrate specificity for basic amino acids from human MOLT-4 T lymphocytes: identification of those inhibited by variable-loop-V3 peptides of HIV-1 (human immunodeficiency virus-1) envelope glycoprotein. Biochem J. 1993 Jun 15;292(Pt 3):711–718. doi: 10.1042/bj2920711. [DOI] [PMC free article] [PubMed] [Google Scholar]
  16. Hattori T., Koito A., Takatsuki K., Kido H., Katunuma N. Involvement of tryptase-related cellular protease(s) in human immunodeficiency virus type 1 infection. FEBS Lett. 1989 May 8;248(1-2):48–52. doi: 10.1016/0014-5793(89)80429-6. [DOI] [PubMed] [Google Scholar]
  17. Hoffman A. D., Banapour B., Levy J. A. Characterization of the AIDS-associated retrovirus reverse transcriptase and optimal conditions for its detection in virions. Virology. 1985 Dec;147(2):326–335. doi: 10.1016/0042-6822(85)90135-7. [DOI] [PubMed] [Google Scholar]
  18. Kliks S. C., Shioda T., Haigwood N. L., Levy J. A. V3 variability can influence the ability of an antibody to neutralize or enhance infection by diverse strains of human immunodeficiency virus type 1. Proc Natl Acad Sci U S A. 1993 Dec 15;90(24):11518–11522. doi: 10.1073/pnas.90.24.11518. [DOI] [PMC free article] [PubMed] [Google Scholar]
  19. Koyanagi Y., Miles S., Mitsuyasu R. T., Merrill J. E., Vinters H. V., Chen I. S. Dual infection of the central nervous system by AIDS viruses with distinct cellular tropisms. Science. 1987 May 15;236(4803):819–822. doi: 10.1126/science.3646751. [DOI] [PubMed] [Google Scholar]
  20. LaRosa G. J., Davide J. P., Weinhold K., Waterbury J. A., Profy A. T., Lewis J. A., Langlois A. J., Dreesman G. R., Boswell R. N., Shadduck P. Conserved sequence and structural elements in the HIV-1 principal neutralizing determinant. Science. 1990 Aug 24;249(4971):932–935. doi: 10.1126/science.2392685. [DOI] [PubMed] [Google Scholar]
  21. Laemmli U. K. Cleavage of structural proteins during the assembly of the head of bacteriophage T4. Nature. 1970 Aug 15;227(5259):680–685. doi: 10.1038/227680a0. [DOI] [PubMed] [Google Scholar]
  22. Laman J. D., Schellekens M. M., Lewis G. K., Moore J. P., Matthews T. J., Langedijk J. P., Meloen R. H., Boersma W. J., Claassen E. A hidden region in the third variable domain of HIV-1 IIIB gp120 identified by a monoclonal antibody. AIDS Res Hum Retroviruses. 1993 Jul;9(7):605–612. doi: 10.1089/aid.1993.9.605. [DOI] [PubMed] [Google Scholar]
  23. Manchanda N., Schwartz B. S. Lipopolysaccharide-induced modulation of human monocyte urokinase production and activity. J Immunol. 1990 Dec 15;145(12):4174–4180. [PubMed] [Google Scholar]
  24. Manchanda N., Schwartz B. S. Single chain urokinase. Augmentation of enzymatic activity upon binding to monocytes. J Biol Chem. 1991 Aug 5;266(22):14580–14584. [PubMed] [Google Scholar]
  25. McNeely T. B., Dealy M., Dripps D. J., Orenstein J. M., Eisenberg S. P., Wahl S. M. Secretory leukocyte protease inhibitor: a human saliva protein exhibiting anti-human immunodeficiency virus 1 activity in vitro. J Clin Invest. 1995 Jul;96(1):456–464. doi: 10.1172/JCI118056. [DOI] [PMC free article] [PubMed] [Google Scholar]
  26. Moore J. P., Sattentau Q. J., Wyatt R., Sodroski J. Probing the structure of the human immunodeficiency virus surface glycoprotein gp120 with a panel of monoclonal antibodies. J Virol. 1994 Jan;68(1):469–484. doi: 10.1128/jvi.68.1.469-484.1994. [DOI] [PMC free article] [PubMed] [Google Scholar]
  27. Murakami T., Hattori T., Takatsuki K. A principal neutralizing domain of human immunodeficiency virus type 1 interacts with proteinase-like molecule(s) at the surface of Molt-4 clone 8 cells. Biochim Biophys Acta. 1991 Sep 20;1079(3):279–284. doi: 10.1016/0167-4838(91)90070-g. [DOI] [PubMed] [Google Scholar]
  28. Nieva J. L., Nir S., Muga A., Goñi F. M., Wilschut J. Interaction of the HIV-1 fusion peptide with phospholipid vesicles: different structural requirements for fusion and leakage. Biochemistry. 1994 Mar 22;33(11):3201–3209. doi: 10.1021/bi00177a009. [DOI] [PubMed] [Google Scholar]
  29. Ou C. Y., Kwok S., Mitchell S. W., Mack D. H., Sninsky J. J., Krebs J. W., Feorino P., Warfield D., Schochetman G. DNA amplification for direct detection of HIV-1 in DNA of peripheral blood mononuclear cells. Science. 1988 Jan 15;239(4837):295–297. doi: 10.1126/science.3336784. [DOI] [PubMed] [Google Scholar]
  30. Page K. A., Stearns S. M., Littman D. R. Analysis of mutations in the V3 domain of gp160 that affect fusion and infectivity. J Virol. 1992 Jan;66(1):524–533. doi: 10.1128/jvi.66.1.524-533.1992. [DOI] [PMC free article] [PubMed] [Google Scholar]
  31. Popovic M., Sarngadharan M. G., Read E., Gallo R. C. Detection, isolation, and continuous production of cytopathic retroviruses (HTLV-III) from patients with AIDS and pre-AIDS. Science. 1984 May 4;224(4648):497–500. doi: 10.1126/science.6200935. [DOI] [PubMed] [Google Scholar]
  32. Scheiblauer H., Reinacher M., Tashiro M., Rott R. Interactions between bacteria and influenza A virus in the development of influenza pneumonia. J Infect Dis. 1992 Oct;166(4):783–791. doi: 10.1093/infdis/166.4.783. [DOI] [PubMed] [Google Scholar]
  33. Schulz T. F., Reeves J. D., Hoad J. G., Tailor C., Stephens P., Clements G., Ortlepp S., Page K. A., Moore J. P., Weiss R. A. Effect of mutations in the V3 loop of HIV-1 gp120 on infectivity and susceptibility to proteolytic cleavage. AIDS Res Hum Retroviruses. 1993 Feb;9(2):159–166. doi: 10.1089/aid.1993.9.159. [DOI] [PubMed] [Google Scholar]
  34. Skinner M. A., Langlois A. J., McDanal C. B., McDougal J. S., Bolognesi D. P., Matthews T. J. Neutralizing antibodies to an immunodominant envelope sequence do not prevent gp120 binding to CD4. J Virol. 1988 Nov;62(11):4195–4200. doi: 10.1128/jvi.62.11.4195-4200.1988. [DOI] [PMC free article] [PubMed] [Google Scholar]
  35. Sodeinde O. A., Subrahmanyam Y. V., Stark K., Quan T., Bao Y., Goguen J. D. A surface protease and the invasive character of plague. Science. 1992 Nov 6;258(5084):1004–1007. doi: 10.1126/science.1439793. [DOI] [PubMed] [Google Scholar]
  36. Stephens R. W., Pöllänen J., Tapiovaara H., Woodrow G., Vaheri A. Stimulation of cell surface plasminogen activation by heparin and related polyionic substances. Semin Thromb Hemost. 1991 Jul;17(3):201–209. doi: 10.1055/s-2007-1002610. [DOI] [PubMed] [Google Scholar]
  37. Suzuki K., Craddock B. P., Okamoto N., Kano T., Steigbigel R. T. Poly A-linked colorimetric microtiter plate assay for HIV reverse transcriptase. J Virol Methods. 1993 Oct;44(2-3):189–198. doi: 10.1016/0166-0934(93)90054-u. [DOI] [PubMed] [Google Scholar]
  38. Werner A., Levy J. A. Human immunodeficiency virus type 1 envelope gp120 is cleaved after incubation with recombinant soluble CD4. J Virol. 1993 May;67(5):2566–2574. doi: 10.1128/jvi.67.5.2566-2574.1993. [DOI] [PMC free article] [PubMed] [Google Scholar]

Articles from Journal of Virology are provided here courtesy of American Society for Microbiology (ASM)

RESOURCES