Abstract
In order to determine if viral selection occurs during mother-to-child transmission of human immunodeficiency virus type 1 (HIV-1), we used a direct solid-phase sequencing method to sequence the p17 matrix protein-encoding regions of viral isolates from 12 HIV-1-infected mother-and-child pairs, 4 infected infants, 4 transmitting mothers, and 22 nontransmitting mothers and compared the sequences. The blood samples were collected during the delivery period for the mothers and during the first month of life for most of the children. The p17 nucleic sequences were distributed among several clades corresponding to the HIV-1 A, B, and G subtypes. At the amino acid level, no significant differences within the known p17 functional regions were observed among the subtypes. Statistical analyses could be performed with the B subtype. Within the major p17 antibody binding site, a constant KIEEEQN motif (amino acids 103 to 109) was found in all mother-and-child isolates from the B subtype. On the other hand, 9 of 17 nontransmitting mother isolates were variable in this 103 to 109 region. Thus, this motif was significantly associated with the transmitting status (chi square, P = 0.0034). A valine residue at position 104 was significantly associated with the nontransmitting phenotype (chi square, P = 0.014), suggesting that it has a protective role during vertical transmission. The C-terminal end of p17 was globally conserved among nontransmitting mother isolates (chi square, P = 0.0037). These results might improve the understanding of the pathogenesis of HIV-1 vertical transmission and might allow the screening of seropositive mothers by a rapid molecular or peptide test.
Full Text
The Full Text of this article is available as a PDF (527.0 KB).
Selected References
These references are in PubMed. This may not be the complete list of references from this article.
- Ahmad N., Baroudy B. M., Baker R. C., Chappey C. Genetic analysis of human immunodeficiency virus type 1 envelope V3 region isolates from mothers and infants after perinatal transmission. J Virol. 1995 Feb;69(2):1001–1012. doi: 10.1128/jvi.69.2.1001-1012.1995. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Albert J., Wahlberg J., Leitner T., Escanilla D., Uhlén M. Analysis of a rape case by direct sequencing of the human immunodeficiency virus type 1 pol and gag genes. J Virol. 1994 Sep;68(9):5918–5924. doi: 10.1128/jvi.68.9.5918-5924.1994. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Barré-Sinoussi F., Chermann J. C., Rey F., Nugeyre M. T., Chamaret S., Gruest J., Dauguet C., Axler-Blin C., Vézinet-Brun F., Rouzioux C. Isolation of a T-lymphotropic retrovirus from a patient at risk for acquired immune deficiency syndrome (AIDS). Science. 1983 May 20;220(4599):868–871. doi: 10.1126/science.6189183. [DOI] [PubMed] [Google Scholar]
- Blanche S., Mayaux M. J., Rouzioux C., Teglas J. P., Firtion G., Monpoux F., Ciraru-Vigneron N., Meier F., Tricoire J., Courpotin C. Relation of the course of HIV infection in children to the severity of the disease in their mothers at delivery. N Engl J Med. 1994 Feb 3;330(5):308–312. doi: 10.1056/NEJM199402033300502. [DOI] [PubMed] [Google Scholar]
- Boucher C. A., Krone W. J., Goudsmit J., Meloen R. H., Naylor P. H., Goldstein A. L., Sun D. K., Sarin P. S. Immune response and epitope mapping of a candidate HIV-1 p17 vaccine HGP30. J Clin Lab Anal. 1990;4(1):43–47. doi: 10.1002/jcla.1860040109. [DOI] [PubMed] [Google Scholar]
- Briant L., Wade C. M., Puel J., Brown A. J., Guyader M. Analysis of envelope sequence variants suggests multiple mechanisms of mother-to-child transmission of human immunodeficiency virus type 1. J Virol. 1995 Jun;69(6):3778–3788. doi: 10.1128/jvi.69.6.3778-3788.1995. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Bukrinsky M. I., Haggerty S., Dempsey M. P., Sharova N., Adzhubel A., Spitz L., Lewis P., Goldfarb D., Emerman M., Stevenson M. A nuclear localization signal within HIV-1 matrix protein that governs infection of non-dividing cells. Nature. 1993 Oct 14;365(6447):666–669. doi: 10.1038/365666a0. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Burnette B., Yu G., Felsted R. L. Phosphorylation of HIV-1 gag proteins by protein kinase C. J Biol Chem. 1993 Apr 25;268(12):8698–8703. [PubMed] [Google Scholar]
- Chazal N., Gay B., Carrière C., Tournier J., Boulanger P. Human immunodeficiency virus type 1 MA deletion mutants expressed in baculovirus-infected cells: cis and trans effects on the Gag precursor assembly pathway. J Virol. 1995 Jan;69(1):365–375. doi: 10.1128/jvi.69.1.365-375.1995. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Devash Y., Calvelli T. A., Wood D. G., Reagan K. J., Rubinstein A. Vertical transmission of human immunodeficiency virus is correlated with the absence of high-affinity/avidity maternal antibodies to the gp120 principal neutralizing domain. Proc Natl Acad Sci U S A. 1990 May;87(9):3445–3449. doi: 10.1073/pnas.87.9.3445. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Gallay P., Swingler S., Aiken C., Trono D. HIV-1 infection of nondividing cells: C-terminal tyrosine phosphorylation of the viral matrix protein is a key regulator. Cell. 1995 Feb 10;80(3):379–388. doi: 10.1016/0092-8674(95)90488-3. [DOI] [PubMed] [Google Scholar]
- Gallay P., Swingler S., Song J., Bushman F., Trono D. HIV nuclear import is governed by the phosphotyrosine-mediated binding of matrix to the core domain of integrase. Cell. 1995 Nov 17;83(4):569–576. doi: 10.1016/0092-8674(95)90097-7. [DOI] [PubMed] [Google Scholar]
- Goedert J. J., Dublin S. Perinatal transmission of HIV type 1: associations with maternal anti-HIV serological reactivity. Mothers and Infants Cohort Study and the HIV-1 Perinatal Serology Working Group. AIDS Res Hum Retroviruses. 1994 Sep;10(9):1125–1134. doi: 10.1089/aid.1994.10.1125. [DOI] [PubMed] [Google Scholar]
- Göttlinger H. G., Sodroski J. G., Haseltine W. A. Role of capsid precursor processing and myristoylation in morphogenesis and infectivity of human immunodeficiency virus type 1. Proc Natl Acad Sci U S A. 1989 Aug;86(15):5781–5785. doi: 10.1073/pnas.86.15.5781. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Holmes E. C., Zhang L. Q., Simmonds P., Rogers A. S., Brown A. J. Molecular investigation of human immunodeficiency virus (HIV) infection in a patient of an HIV-infected surgeon. J Infect Dis. 1993 Jun;167(6):1411–1414. doi: 10.1093/infdis/167.6.1411. [DOI] [PubMed] [Google Scholar]
- Karageorgos L., Li P., Burrell C. Characterization of HIV replication complexes early after cell-to-cell infection. AIDS Res Hum Retroviruses. 1993 Sep;9(9):817–823. doi: 10.1089/aid.1993.9.817. [DOI] [PubMed] [Google Scholar]
- Kasper P., Simmonds P., Schneweis K. E., Kaiser R., Matz B., Oldenburg J., Brackmann H. H., Holmes E. C. The genetic diversification of the HIV type 1 gag p17 gene in patients infected from a common source. AIDS Res Hum Retroviruses. 1995 Oct;11(10):1197–1201. doi: 10.1089/aid.1995.11.1197. [DOI] [PubMed] [Google Scholar]
- Lamers S. L., Sleasman J. W., She J. X., Barrie K. A., Pomeroy S. M., Barrett D. J., Goodenow M. M. Persistence of multiple maternal genotypes of human immunodeficiency virus type I in infants infected by vertical transmission. J Clin Invest. 1994 Jan;93(1):380–390. doi: 10.1172/JCI116970. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Ljunggren K., Moschese V., Broliden P. A., Giaquinto C., Quinti I., Fenyö E. M., Wahren B., Rossi P., Jondal M. Antibodies mediating cellular cytotoxicity and neutralization correlate with a better clinical stage in children born to human immunodeficiency virus-infected mothers. J Infect Dis. 1990 Feb;161(2):198–202. doi: 10.1093/infdis/161.2.198. [DOI] [PubMed] [Google Scholar]
- Lodge R., Göttlinger H., Gabuzda D., Cohen E. A., Lemay G. The intracytoplasmic domain of gp41 mediates polarized budding of human immunodeficiency virus type 1 in MDCK cells. J Virol. 1994 Aug;68(8):4857–4861. doi: 10.1128/jvi.68.8.4857-4861.1994. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Louwagie J., McCutchan F. E., Peeters M., Brennan T. P., Sanders-Buell E., Eddy G. A., van der Groen G., Fransen K., Gershy-Damet G. M., Deleys R. Phylogenetic analysis of gag genes from 70 international HIV-1 isolates provides evidence for multiple genotypes. AIDS. 1993 Jun;7(6):769–780. doi: 10.1097/00002030-199306000-00003. [DOI] [PubMed] [Google Scholar]
- Massiah M. A., Starich M. R., Paschall C., Summers M. F., Christensen A. M., Sundquist W. I. Three-dimensional structure of the human immunodeficiency virus type 1 matrix protein. J Mol Biol. 1994 Nov 25;244(2):198–223. doi: 10.1006/jmbi.1994.1719. [DOI] [PubMed] [Google Scholar]
- Matthews S., Barlow P., Boyd J., Barton G., Russell R., Mills H., Cunningham M., Meyers N., Burns N., Clark N. Structural similarity between the p17 matrix protein of HIV-1 and interferon-gamma. Nature. 1994 Aug 25;370(6491):666–668. doi: 10.1038/370666a0. [DOI] [PubMed] [Google Scholar]
- Morikawa Y., Kishi T., Zhang W. H., Nermut M. V., Hockley D. J., Jones I. M. A molecular determinant of human immunodeficiency virus particle assembly located in matrix antigen p17. J Virol. 1995 Jul;69(7):4519–4523. doi: 10.1128/jvi.69.7.4519-4523.1995. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Mulder-Kampinga G. A., Kuiken C., Dekker J., Scherpbier H. J., Boer K., Goudsmit J. Genomic human immunodeficiency virus type 1 RNA variation in mother and child following intra-uterine virus transmission. J Gen Virol. 1993 Sep;74(Pt 9):1747–1756. doi: 10.1099/0022-1317-74-9-1747. [DOI] [PubMed] [Google Scholar]
- Mulder-Kampinga G. A., Simonon A., Kuiken C. L., Dekker J., Scherpbier H. J., van de Perre P., Boer K., Goudsmit J. Similarity in env and gag genes between genomic RNAs of human immunodeficiency virus type 1 (HIV-1) from mother and infant is unrelated to time of HIV-1 RNA positivity in the child. J Virol. 1995 Apr;69(4):2285–2296. doi: 10.1128/jvi.69.4.2285-2296.1995. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Naylor P. H., Naylor C. W., Badamchian M., Wada S., Goldstein A. L., Wang S. S., Sun D. K., Thornton A. H., Sarin P. S. Human immunodeficiency virus contains an epitope immunoreactive with thymosin alpha 1 and the 30-amino acid synthetic p17 group-specific antigen peptide HGP-30. Proc Natl Acad Sci U S A. 1987 May;84(9):2951–2955. doi: 10.1073/pnas.84.9.2951. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Ometto L., Zanotto C., Maccabruni A., Caselli D., Truscia D., Giaquinto C., Ruga E., Chieco-Bianchi L., De Rossi A. Viral phenotype and host-cell susceptibility to HIV-1 infection as risk factors for mother-to-child HIV-1 transmission. AIDS. 1995 May;9(5):427–434. [PubMed] [Google Scholar]
- Parekh B. S., Shaffer N., Pau C. P., Abrams E., Thomas P., Pollack H., Bamji M., Kaul A., Schochetman G., Rogers M. Lack of correlation between maternal antibodies to V3 loop peptides of gp120 and perinatal HIV-1 transmission. The NYC Perinatal HIV Transmission Collaborative Study. AIDS. 1991 Oct;5(10):1179–1184. doi: 10.1097/00002030-199110000-00004. [DOI] [PubMed] [Google Scholar]
- Reicin A. S., Paik S., Berkowitz R. D., Luban J., Lowy I., Goff S. P. Linker insertion mutations in the human immunodeficiency virus type 1 gag gene: effects on virion particle assembly, release, and infectivity. J Virol. 1995 Feb;69(2):642–650. doi: 10.1128/jvi.69.2.642-650.1995. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Robertson C. A., Mok J. Y., Froebel K. S., Simmonds P., Burns S. M., Marsden H. S., Graham S. Maternal antibodies to gp120 V3 sequence do not correlate with protection against vertical transmission of human immunodeficiency virus. J Infect Dis. 1992 Oct;166(4):704–709. doi: 10.1093/infdis/166.4.704. [DOI] [PubMed] [Google Scholar]
- Roques P. A., Gras G., Parnet-Mathieu F., Mabondzo A. M., Dollfus C., Narwa R., Marcé D., Tranchot-Diallo J., Hervé F., Lasfargues G. Clearance of HIV infection in 12 perinatally infected children: clinical, virological and immunological data. AIDS. 1995 Dec;9(12):F19–F26. [PubMed] [Google Scholar]
- Roques P., Marce D., Courpotin C., Mathieu F. P., Herve F., Boussin F. D., Narwa R., Meyohas M. C., Dollfus C., Dormont D. Correlation between HIV provirus burden and in utero transmission. AIDS. 1993 Nov;7 (Suppl 2):S39–S43. doi: 10.1097/00002030-199311002-00009. [DOI] [PubMed] [Google Scholar]
- Sarin P. S., Sun D. K., Thornton A. H., Naylor P. H., Goldstein A. L. Neutralization of HTLV-III/LAV replication by antiserum to thymosin alpha 1. Science. 1986 May 30;232(4754):1135–1137. doi: 10.1126/science.3010464. [DOI] [PubMed] [Google Scholar]
- Scarlatti G., Hodara V., Rossi P., Muggiasca L., Bucceri A., Albert J., Fenyö E. M. Transmission of human immunodeficiency virus type 1 (HIV-1) from mother to child correlates with viral phenotype. Virology. 1993 Dec;197(2):624–629. doi: 10.1006/viro.1993.1637. [DOI] [PubMed] [Google Scholar]
- Scarlatti G., Leitner T., Halapi E., Wahlberg J., Marchisio P., Clerici-Schoeller M. A., Wigzell H., Fenyö E. M., Albert J., Uhlén M. Comparison of variable region 3 sequences of human immunodeficiency virus type 1 from infected children with the RNA and DNA sequences of the virus populations of their mothers. Proc Natl Acad Sci U S A. 1993 Mar 1;90(5):1721–1725. doi: 10.1073/pnas.90.5.1721. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Scarlatti G., Leitner T., Hodara V., Halapi E., Rossi P., Albert J., Fenyö E. M. Neutralizing antibodies and viral characteristics in mother-to-child transmission of HIV-1. AIDS. 1993 Nov;7 (Suppl 2):S45–S48. doi: 10.1097/00002030-199311002-00010. [DOI] [PubMed] [Google Scholar]
- Spearman P., Wang J. J., Vander Heyden N., Ratner L. Identification of human immunodeficiency virus type 1 Gag protein domains essential to membrane binding and particle assembly. J Virol. 1994 May;68(5):3232–3242. doi: 10.1128/jvi.68.5.3232-3242.1994. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Thompson J. D., Higgins D. G., Gibson T. J. CLUSTAL W: improving the sensitivity of progressive multiple sequence alignment through sequence weighting, position-specific gap penalties and weight matrix choice. Nucleic Acids Res. 1994 Nov 11;22(22):4673–4680. doi: 10.1093/nar/22.22.4673. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Van de Peere P., Lepage P., Simonon A., Desgranges C., Hitimana D. G., Bazubagira A., Van Goethem C., Kleinschmidt A., Bex F., Broliden K. Biological markers associated with prolonged survival in African children maternally infected by the human immunodeficiency virus type 1. AIDS Res Hum Retroviruses. 1992 Apr;8(4):435–442. doi: 10.1089/aid.1992.8.435. [DOI] [PubMed] [Google Scholar]
- Vanden Haesevelde M., Decourt J. L., De Leys R. J., Vanderborght B., van der Groen G., van Heuverswijn H., Saman E. Genomic cloning and complete sequence analysis of a highly divergent African human immunodeficiency virus isolate. J Virol. 1994 Mar;68(3):1586–1596. doi: 10.1128/jvi.68.3.1586-1596.1994. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Weiser B., Nachman S., Tropper P., Viscosi K. H., Grimson R., Baxter G., Fang G., Reyelt C., Hutcheon N., Burger H. Quantitation of human immunodeficiency virus type 1 during pregnancy: relationship of viral titer to mother-to-child transmission and stability of viral load. Proc Natl Acad Sci U S A. 1994 Aug 16;91(17):8037–8041. doi: 10.1073/pnas.91.17.8037. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Wolinsky S. M., Wike C. M., Korber B. T., Hutto C., Parks W. P., Rosenblum L. L., Kunstman K. J., Furtado M. R., Muñoz J. L. Selective transmission of human immunodeficiency virus type-1 variants from mothers to infants. Science. 1992 Feb 28;255(5048):1134–1137. doi: 10.1126/science.1546316. [DOI] [PubMed] [Google Scholar]
- Yu G., Shen F. S., Sturch S., Aquino A., Glazer R. I., Felsted R. L. Regulation of HIV-1 gag protein subcellular targeting by protein kinase C. J Biol Chem. 1995 Mar 3;270(9):4792–4796. doi: 10.1074/jbc.270.9.4792. [DOI] [PubMed] [Google Scholar]
- Yu X., Yu Q. C., Lee T. H., Essex M. The C terminus of human immunodeficiency virus type 1 matrix protein is involved in early steps of the virus life cycle. J Virol. 1992 Sep;66(9):5667–5670. doi: 10.1128/jvi.66.9.5667-5670.1992. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Yu X., Yuan X., Matsuda Z., Lee T. H., Essex M. The matrix protein of human immunodeficiency virus type 1 is required for incorporation of viral envelope protein into mature virions. J Virol. 1992 Aug;66(8):4966–4971. doi: 10.1128/jvi.66.8.4966-4971.1992. [DOI] [PMC free article] [PubMed] [Google Scholar]
- de Mareuil J., Brichacek B., Salaun D., Chermann J. C., Hirsch I. The human immunodeficiency virus (HIV) gag gene product p18 is responsible for enhanced fusogenicity and host range tropism of the highly cytopathic HIV-1-NDK strain. J Virol. 1992 Nov;66(11):6797–6801. doi: 10.1128/jvi.66.11.6797-6801.1992. [DOI] [PMC free article] [PubMed] [Google Scholar]
- di Maria H., Courpotin C., Rouzioux C., Cohen D., Rio D., Boussin F., Dormont D. Transplacental transmission of human immunodeficiency virus. Lancet. 1986 Jul 26;2(8500):215–216. doi: 10.1016/s0140-6736(86)92509-2. [DOI] [PubMed] [Google Scholar]