Skip to main content
Journal of Virology logoLink to Journal of Virology
. 1996 Jul;70(7):4632–4645. doi: 10.1128/jvi.70.7.4632-4645.1996

Direct interactions of coxsackievirus B3 with immune cells in the splenic compartment of mice susceptible or resistant to myocarditis.

D R Anderson 1, J E Wilson 1, C M Carthy 1, D Yang 1, R Kandolf 1, B M McManus 1
PMCID: PMC190400  PMID: 8676490

Abstract

In vitro replication of coxsackievirus B3 (CVB3) in cells of the immune system derived from uninfected adolescent A/J and C57BL/6J mice and replication of CVB3 in and association with immune cells from spleens of infected animals in vivo were assessed. Nonstimulated or mitogen-stimulated spleen cells were minimally permissive for viral replication during an 8-h period. Three days postinfection (p.i.), CVB3 RNA was localized in vivo to B cells and follicular dendritic cells of germinal centers in both A/J and C57BL/6J mice; however, extrafollicular localization was greater in C57BL/6J mice (P = 0.0054). Although the pattern of CVB3 RNA localization was different, the total load of infections virus (PFU per milligram of tissue) was not different. Splenic CVB3 titers (PFU per milligram of tissue) in both strains were maximal at day 3 or 4 p.i. and were back to baseline by day 7 p.i., with most infectious virus being non-cell associated. CVB3 titers (PFU per milligram of tissue) correlated directly with in situ hybridization positivity in splenic follicles and extrafollicular regions in both murine strains; however, follicular hybridization intensity was greater in A/J mice at day 5 p.i. (P = 0.021). Flow cytometric analysis demonstrated that 50.4% of total spleen cells positive for CVB3 antigen were B cells and 69.6% of positive splenic lymphocytes were B cells. Myocardial virus load in C57BL/6J mice was significantly lower than that in A/J mice at days 4 and 5 p.i. These data indicate that CVB3 replicates in murine splenocytes in vitro and in B cells and extrafollicular cells in vivo.

Full Text

The Full Text of this article is available as a PDF (3.3 MB).

Selected References

These references are in PubMed. This may not be the complete list of references from this article.

  1. Ahmed R., King C. C., Oldstone M. B. Virus-lymphocyte interaction: T cells of the helper subset are infected with lymphocytic choriomeningitis virus during persistent infection in vivo. J Virol. 1987 May;61(5):1571–1576. doi: 10.1128/jvi.61.5.1571-1576.1987. [DOI] [PMC free article] [PubMed] [Google Scholar]
  2. Ahmed R., Oldstone M. B. Organ-specific selection of viral variants during chronic infection. J Exp Med. 1988 May 1;167(5):1719–1724. doi: 10.1084/jem.167.5.1719. [DOI] [PMC free article] [PubMed] [Google Scholar]
  3. Althage A., Odermatt B., Moskophidis D., Kündig T., Hoffman-Rohrer U., Hengartner H., Zinkernagel R. M. Immunosuppression by lymphocytic choriomeningitis virus infection: competent effector T and B cells but impaired antigen presentation. Eur J Immunol. 1992 Jul;22(7):1803–1812. doi: 10.1002/eji.1830220720. [DOI] [PubMed] [Google Scholar]
  4. Babbitt B. P., Matsueda G., Haber E., Unanue E. R., Allen P. M. Antigenic competition at the level of peptide-Ia binding. Proc Natl Acad Sci U S A. 1986 Jun;83(12):4509–4513. doi: 10.1073/pnas.83.12.4509. [DOI] [PMC free article] [PubMed] [Google Scholar]
  5. Bendinelli M., Matteucci D., Toniolo A., Patanè A. M., Pistillo M. P. Impairment of immunocompetent mouse spleen cell functions by infection with coxsackievirus B3. J Infect Dis. 1982 Dec;146(6):797–805. doi: 10.1093/infdis/146.6.797. [DOI] [PubMed] [Google Scholar]
  6. Bergelson J. M., Mohanty J. G., Crowell R. L., St John N. F., Lublin D. M., Finberg R. W. Coxsackievirus B3 adapted to growth in RD cells binds to decay-accelerating factor (CD55). J Virol. 1995 Mar;69(3):1903–1906. doi: 10.1128/jvi.69.3.1903-1906.1995. [DOI] [PMC free article] [PubMed] [Google Scholar]
  7. Blay R., Simpson K., Leslie K., Huber S. Coxsackievirus-induced disease. CD4+ cells initiate both myocarditis and pancreatitis in DBA/2 mice. Am J Pathol. 1989 Nov;135(5):899–907. [PMC free article] [PubMed] [Google Scholar]
  8. Chapman N. M., Tracy S., Gauntt C. J., Fortmueller U. Molecular detection and identification of enteroviruses using enzymatic amplification and nucleic acid hybridization. J Clin Microbiol. 1990 May;28(5):843–850. doi: 10.1128/jcm.28.5.843-850.1990. [DOI] [PMC free article] [PubMed] [Google Scholar]
  9. Chow L. H., Beisel K. W., McManus B. M. Enteroviral infection of mice with severe combined immunodeficiency. Evidence for direct viral pathogenesis of myocardial injury. Lab Invest. 1992 Jan;66(1):24–31. [PubMed] [Google Scholar]
  10. Chow L. H., Gauntt C. J., McManus B. M. Differential effects of myocarditic variants of Coxsackievirus B3 in inbred mice. A pathologic characterization of heart tissue damage. Lab Invest. 1991 Jan;64(1):55–64. [PubMed] [Google Scholar]
  11. Dagan R., Menegus M. A. Replication of enteroviruses in human mononuclear cells. Isr J Med Sci. 1992 Jun;28(6):369–372. [PubMed] [Google Scholar]
  12. Embretson J., Zupancic M., Ribas J. L., Burke A., Racz P., Tenner-Racz K., Haase A. T. Massive covert infection of helper T lymphocytes and macrophages by HIV during the incubation period of AIDS. Nature. 1993 Mar 25;362(6418):359–362. doi: 10.1038/362359a0. [DOI] [PubMed] [Google Scholar]
  13. GRESSER I., CHANY C. MULTIPLICATION OF POLIOVIRUS TYPE I IN PREPARATIONS OF HUMAN LEUKOCYTES AND ITS INHIBITION BY INTERFERON. J Immunol. 1964 Jun;92:889–895. [PubMed] [Google Scholar]
  14. Gauntt C. J., Arizpe H. M., Higdon A. L., Wood H. J., Bowers D. F., Rozek M. M., Crawley R. Molecular mimicry, anti-coxsackievirus B3 neutralizing monoclonal antibodies, and myocarditis. J Immunol. 1995 Mar 15;154(6):2983–2995. [PubMed] [Google Scholar]
  15. Gauntt C. J., Trousdale M. D., LaBadie D. R., Paque R. E., Nealon T. Properties of coxsackievirus B3 variants which are amyocarditic or myocarditic for mice. J Med Virol. 1979;3(3):207–220. doi: 10.1002/jmv.1890030307. [DOI] [PubMed] [Google Scholar]
  16. Gomez M. P., Reyes M. P., Smith F., Ho L. K., Lerner A. M. Coxsackievirus B3-positive mononuclear leukocytes in peripheral blood of Swiss and athymic mice during infection. Proc Soc Exp Biol Med. 1980 Oct;165(1):107–113. doi: 10.3181/00379727-165-40942. [DOI] [PubMed] [Google Scholar]
  17. Henke A., Mohr C., Sprenger H., Graebner C., Stelzner A., Nain M., Gemsa D. Coxsackievirus B3-induced production of tumor necrosis factor-alpha, IL-1 beta, and IL-6 in human monocytes. J Immunol. 1992 Apr 1;148(7):2270–2277. [PubMed] [Google Scholar]
  18. Hohenadl C., Klingel K., Mertsching J., Hofschneider P. H., Kandolf R. Strand-specific detection of enteroviral RNA in myocardial tissue by in situ hybridization. Mol Cell Probes. 1991 Feb;5(1):11–20. doi: 10.1016/0890-8508(91)90033-g. [DOI] [PubMed] [Google Scholar]
  19. Huber S. A., Lyden D. C., Lodge P. A. Immunopathogenesis of experimental Coxsackievirus induced myocarditis: role of autoimmunity. Herz. 1985 Feb;10(1):1–7. [PubMed] [Google Scholar]
  20. Huber S. A., Polgar J., Schultheiss P., Schwimmbeck P. Augmentation of pathogenesis of coxsackievirus B3 infections in mice by exogenous administration of interleukin-1 and interleukin-2. J Virol. 1994 Jan;68(1):195–206. doi: 10.1128/jvi.68.1.195-206.1994. [DOI] [PMC free article] [PubMed] [Google Scholar]
  21. Jin O., Sole M. J., Butany J. W., Chia W. K., McLaughlin P. R., Liu P., Liew C. C. Detection of enterovirus RNA in myocardial biopsies from patients with myocarditis and cardiomyopathy using gene amplification by polymerase chain reaction. Circulation. 1990 Jul;82(1):8–16. doi: 10.1161/01.cir.82.1.8. [DOI] [PubMed] [Google Scholar]
  22. Karupiah G., Xie Q. W., Buller R. M., Nathan C., Duarte C., MacMicking J. D. Inhibition of viral replication by interferon-gamma-induced nitric oxide synthase. Science. 1993 Sep 10;261(5127):1445–1448. doi: 10.1126/science.7690156. [DOI] [PubMed] [Google Scholar]
  23. King C. C., de Fries R., Kolhekar S. R., Ahmed R. In vivo selection of lymphocyte-tropic and macrophage-tropic variants of lymphocytic choriomeningitis virus during persistent infection. J Virol. 1990 Nov;64(11):5611–5616. doi: 10.1128/jvi.64.11.5611-5616.1990. [DOI] [PMC free article] [PubMed] [Google Scholar]
  24. Klingel K., Hohenadl C., Canu A., Albrecht M., Seemann M., Mall G., Kandolf R. Ongoing enterovirus-induced myocarditis is associated with persistent heart muscle infection: quantitative analysis of virus replication, tissue damage, and inflammation. Proc Natl Acad Sci U S A. 1992 Jan 1;89(1):314–318. doi: 10.1073/pnas.89.1.314. [DOI] [PMC free article] [PubMed] [Google Scholar]
  25. Klump W. M., Bergmann I., Müller B. C., Ameis D., Kandolf R. Complete nucleotide sequence of infectious Coxsackievirus B3 cDNA: two initial 5' uridine residues are regained during plus-strand RNA synthesis. J Virol. 1990 Apr;64(4):1573–1583. doi: 10.1128/jvi.64.4.1573-1583.1990. [DOI] [PMC free article] [PubMed] [Google Scholar]
  26. Krajewski S., Bodrug S., Gascoyne R., Berean K., Krajewska M., Reed J. C. Immunohistochemical analysis of Mcl-1 and Bcl-2 proteins in normal and neoplastic lymph nodes. Am J Pathol. 1994 Sep;145(3):515–525. [PMC free article] [PubMed] [Google Scholar]
  27. Kroese F. G., Wubbena A. S., Seijen H. G., Nieuwenhuis P. Germinal centers develop oligoclonally. Eur J Immunol. 1987 Jul;17(7):1069–1072. doi: 10.1002/eji.1830170726. [DOI] [PubMed] [Google Scholar]
  28. Liu Y. J., Johnson G. D., Gordon J., MacLennan I. C. Germinal centres in T-cell-dependent antibody responses. Immunol Today. 1992 Jan;13(1):17–21. doi: 10.1016/0167-5699(92)90199-H. [DOI] [PubMed] [Google Scholar]
  29. MIMS C. A. ASPECTS OF THE PATHOGENESIS OF VIRUS DISEASES. Bacteriol Rev. 1964 Mar;28:30–71. doi: 10.1128/br.28.1.30-71.1964. [DOI] [PMC free article] [PubMed] [Google Scholar]
  30. Matloubian M., Kolhekar S. R., Somasundaram T., Ahmed R. Molecular determinants of macrophage tropism and viral persistence: importance of single amino acid changes in the polymerase and glycoprotein of lymphocytic choriomeningitis virus. J Virol. 1993 Dec;67(12):7340–7349. doi: 10.1128/jvi.67.12.7340-7349.1993. [DOI] [PMC free article] [PubMed] [Google Scholar]
  31. Matteucci D., Paglianti M., Giangregorio A. M., Capobianchi M. R., Dianzani F., Bendinelli M. Group B coxsackieviruses readily establish persistent infections in human lymphoid cell lines. J Virol. 1985 Nov;56(2):651–654. doi: 10.1128/jvi.56.2.651-654.1985. [DOI] [PMC free article] [PubMed] [Google Scholar]
  32. Matteucci D., Toniolo A., Conaldi P. G., Basolo F., Gori Z., Bendinelli M. Systemic lymphoid atrophy in coxsackievirus B3-infected mice: effects of virus and immunopotentiating agents. J Infect Dis. 1985 Jun;151(6):1100–1108. doi: 10.1093/infdis/151.6.1100. [DOI] [PubMed] [Google Scholar]
  33. McChesney M. B., Oldstone M. B. Viruses perturb lymphocyte functions: selected principles characterizing virus-induced immunosuppression. Annu Rev Immunol. 1987;5:279–304. doi: 10.1146/annurev.iy.05.040187.001431. [DOI] [PubMed] [Google Scholar]
  34. McManus B. M., Chow L. H., Wilson J. E., Anderson D. R., Gulizia J. M., Gauntt C. J., Klingel K. E., Beisel K. W., Kandolf R. Direct myocardial injury by enterovirus: a central role in the evolution of murine myocarditis. Clin Immunol Immunopathol. 1993 Aug;68(2):159–169. doi: 10.1006/clin.1993.1113. [DOI] [PubMed] [Google Scholar]
  35. Myers T. W., Gelfand D. H. Reverse transcription and DNA amplification by a Thermus thermophilus DNA polymerase. Biochemistry. 1991 Aug 6;30(31):7661–7666. doi: 10.1021/bi00245a001. [DOI] [PubMed] [Google Scholar]
  36. Nelson E., Hager H., Kovács E. Virus-Containing Leukocytes in Polioencephalitis. Science. 1963 Feb 8;139(3554):499–501. doi: 10.1126/science.139.3554.499. [DOI] [PubMed] [Google Scholar]
  37. Notkins A. L., Mergenhagen S. E., Howard R. J. Effect of virus infections on the function of the immune system. Annu Rev Microbiol. 1970;24:525–538. doi: 10.1146/annurev.mi.24.100170.002521. [DOI] [PubMed] [Google Scholar]
  38. Pantaleo G., Graziosi C., Demarest J. F., Butini L., Montroni M., Fox C. H., Orenstein J. M., Kotler D. P., Fauci A. S. HIV infection is active and progressive in lymphoid tissue during the clinically latent stage of disease. Nature. 1993 Mar 25;362(6418):355–358. doi: 10.1038/362355a0. [DOI] [PubMed] [Google Scholar]
  39. Razvi E. S., Jiang Z., Woda B. A., Welsh R. M. Lymphocyte apoptosis during the silencing of the immune response to acute viral infections in normal, lpr, and Bcl-2-transgenic mice. Am J Pathol. 1995 Jul;147(1):79–91. [PMC free article] [PubMed] [Google Scholar]
  40. Schriever F., Nadler L. M. The central role of follicular dendritic cells in lymphoid tissues. Adv Immunol. 1992;51:243–284. doi: 10.1016/s0065-2776(08)60489-7. [DOI] [PubMed] [Google Scholar]
  41. Schuler G., Hambrecht R., Schlierf G., Niebauer J., Hauer K., Neumann J., Hoberg E., Drinkmann A., Bacher F., Grunze M. Regular physical exercise and low-fat diet. Effects on progression of coronary artery disease. Circulation. 1992 Jul;86(1):1–11. doi: 10.1161/01.cir.86.1.1. [DOI] [PubMed] [Google Scholar]
  42. Shafren D. R., Bates R. C., Agrez M. V., Herd R. L., Burns G. F., Barry R. D. Coxsackieviruses B1, B3, and B5 use decay accelerating factor as a receptor for cell attachment. J Virol. 1995 Jun;69(6):3873–3877. doi: 10.1128/jvi.69.6.3873-3877.1995. [DOI] [PMC free article] [PubMed] [Google Scholar]
  43. Soontiëns F. J., van der Veen J. Evidence for a macrophage-mediated effect of poliovirus on the lymphocyte response to phytohemagglutinin. J Immunol. 1973 Nov;111(5):1411–1419. [PubMed] [Google Scholar]
  44. Stoddart C. A., Cardin R. D., Boname J. M., Manning W. C., Abenes G. B., Mocarski E. S. Peripheral blood mononuclear phagocytes mediate dissemination of murine cytomegalovirus. J Virol. 1994 Oct;68(10):6243–6253. doi: 10.1128/jvi.68.10.6243-6253.1994. [DOI] [PMC free article] [PubMed] [Google Scholar]
  45. Thorbecke G. J., Amin A. R., Tsiagbe V. K. Biology of germinal centers in lymphoid tissue. FASEB J. 1994 Aug;8(11):832–840. doi: 10.1096/fasebj.8.11.8070632. [DOI] [PubMed] [Google Scholar]
  46. Tse W. T., Forget B. G. Reverse transcription and direct amplification of cellular RNA transcripts by Taq polymerase. Gene. 1990 Apr 16;88(2):293–296. doi: 10.1016/0378-1119(90)90047-u. [DOI] [PubMed] [Google Scholar]
  47. Tu Z., Chapman N. M., Hufnagel G., Tracy S., Romero J. R., Barry W. H., Zhao L., Currey K., Shapiro B. The cardiovirulent phenotype of coxsackievirus B3 is determined at a single site in the genomic 5' nontranslated region. J Virol. 1995 Aug;69(8):4607–4618. doi: 10.1128/jvi.69.8.4607-4618.1995. [DOI] [PMC free article] [PubMed] [Google Scholar]
  48. Vuorinen T., Vainionpä R., Kettinen H., Hyypiä T. Coxsackievirus B3 infection in human leukocytes and lymphoid cell lines. Blood. 1994 Aug 1;84(3):823–829. [PubMed] [Google Scholar]
  49. Wheelock E. F., Toy S. T. Participation of lymphocytes in viral infections. Adv Immunol. 1973;16:123–184. doi: 10.1016/s0065-2776(08)60297-7. [DOI] [PubMed] [Google Scholar]
  50. Willems F. T., Melnick J. L., Rawls W. E. Replication of poliovirus in phytohemagglutinin-stimulated human lymphocytes. J Virol. 1969 May;3(5):451–457. doi: 10.1128/jvi.3.5.451-457.1969. [DOI] [PMC free article] [PubMed] [Google Scholar]
  51. Wolfgram L. J., Rose N. R. Coxsackievirus infection as a trigger of cardiac autoimmunity. Immunol Res. 1989;8(1):61–80. doi: 10.1007/BF02918555. [DOI] [PubMed] [Google Scholar]
  52. Woodruff J. F. Viral myocarditis. A review. Am J Pathol. 1980 Nov;101(2):425–484. [PMC free article] [PubMed] [Google Scholar]
  53. Wu-Hsieh B., Howard D. H., Ahmed R. Virus-induced immunosuppression: a murine model of susceptibility to opportunistic infection. J Infect Dis. 1988 Jul;158(1):232–235. doi: 10.1093/infdis/158.1.232. [DOI] [PubMed] [Google Scholar]

Articles from Journal of Virology are provided here courtesy of American Society for Microbiology (ASM)

RESOURCES