Skip to main content
Journal of Virology logoLink to Journal of Virology
. 1996 Jul;70(7):4864–4870. doi: 10.1128/jvi.70.7.4864-4870.1996

Three retroviral sequences in amphibians are distinct from those in mammals and birds.

M Tristem 1, E Herniou 1, K Summers 1, J Cook 1
PMCID: PMC190434  PMID: 8676524

Abstract

We isolated and characterized three endogenous retroviral fragments from the dart-poison frog Dendrobates ventrimaculatus. These are the first retroviral sequences to be identified in amphibians, and consequently retroviruses have now been found in each of the five major vertebrate classes. Comparison of the amphibian retroviral fragments, termed DevI, DevII, and DevIII, with mammalian and avian isolates revealed significant differences between their nucleotide sequences. This suggested that they were only distantly related to the seven currently recognized retroviral genera. Additional analysis by phylogeny reconstruction showed that the amphibian retroviral fragments were approximately equally related to the Moloney leukemia-related viruses, the spumaviruses, and walleye dermal sarcoma virus. Hybridization experiments revealed that viruses closely related to DevI, DevII, and DevIII do not appear to be widespread in other vertebrates and that DevI, DevII, and DevIII are all present at high copy numbers within their amphibian hosts, typically at over 250 copies per genome. The viruses described here, along with two others which have recently been found in a fish and a reptile, indicate that there may be some major differences in the retroviruses harbored by different vertebrate classes. This suggests that further characterization of retroviruses of fish, reptiles, and amphibians will help in understanding the evolution of the whole retroviral family and may well lead to the discovery of retroviruses with novel biological properties.

Full Text

The Full Text of this article is available as a PDF (446.2 KB).

Selected References

These references are in PubMed. This may not be the complete list of references from this article.

  1. Carneiro S. M., Tanaka H., Kisielius J. J., Sesso A. Occurrence of retrovirus-like particles in various cellular and intercellular compartments of the venom glands from Bothrops jararacussu. Res Vet Sci. 1992 Nov;53(3):399–401. doi: 10.1016/0034-5288(92)90148-u. [DOI] [PubMed] [Google Scholar]
  2. Chakrabarti L., Guyader M., Alizon M., Daniel M. D., Desrosiers R. C., Tiollais P., Sonigo P. Sequence of simian immunodeficiency virus from macaque and its relationship to other human and simian retroviruses. Nature. 1987 Aug 6;328(6130):543–547. doi: 10.1038/328543a0. [DOI] [PubMed] [Google Scholar]
  3. Chiu I. M., Callahan R., Tronick S. R., Schlom J., Aaronson S. A. Major pol gene progenitors in the evolution of oncoviruses. Science. 1984 Jan 27;223(4634):364–370. doi: 10.1126/science.6197754. [DOI] [PubMed] [Google Scholar]
  4. Delassus S., Sonigo P., Wain-Hobson S. Genetic organization of gibbon ape leukemia virus. Virology. 1989 Nov;173(1):205–213. doi: 10.1016/0042-6822(89)90236-5. [DOI] [PubMed] [Google Scholar]
  5. Donahue P. R., Hoover E. A., Beltz G. A., Riedel N., Hirsch V. M., Overbaugh J., Mullins J. I. Strong sequence conservation among horizontally transmissible, minimally pathogenic feline leukemia viruses. J Virol. 1988 Mar;62(3):722–731. doi: 10.1128/jvi.62.3.722-731.1988. [DOI] [PMC free article] [PubMed] [Google Scholar]
  6. Doolittle R. F., Feng D. F., Johnson M. S., McClure M. A. Origins and evolutionary relationships of retroviruses. Q Rev Biol. 1989 Mar;64(1):1–30. doi: 10.1086/416128. [DOI] [PubMed] [Google Scholar]
  7. Doolittle R. F., Feng D. F., McClure M. A., Johnson M. S. Retrovirus phylogeny and evolution. Curr Top Microbiol Immunol. 1990;157:1–18. doi: 10.1007/978-3-642-75218-6_1. [DOI] [PubMed] [Google Scholar]
  8. Doolittle R. F., Feng D. F. Tracing the origin of retroviruses. Curr Top Microbiol Immunol. 1992;176:195–211. doi: 10.1007/978-3-642-77011-1_13. [DOI] [PubMed] [Google Scholar]
  9. Eaton W. D., Folkins B., Bagshaw J., Traxler G., Kent M. L. Isolation of a retrovirus from two fish cell lines developed from chinook salmon (Oncorhynchus tshawytscha) with plasmacytoid leukaemia. J Gen Virol. 1993 Oct;74(Pt 10):2299–2302. doi: 10.1099/0022-1317-74-10-2299. [DOI] [PubMed] [Google Scholar]
  10. Frerichs G. N., Morgan D., Hart D., Skerrow C., Roberts R. J., Onions D. E. Spontaneously productive C-type retrovirus infection of fish cell lines. J Gen Virol. 1991 Oct;72(Pt 10):2537–2539. doi: 10.1099/0022-1317-72-10-2537. [DOI] [PubMed] [Google Scholar]
  11. Gak E., Yaniv A., Sherman L., Ianconescu M., Tronick S. R., Gazit A. Lymphoproliferative disease virus of turkeys: sequence analysis and transcriptional activity of the long terminal repeat. Gene. 1991 Mar 15;99(2):157–162. doi: 10.1016/0378-1119(91)90122-r. [DOI] [PubMed] [Google Scholar]
  12. Hansen L. J., Chalker D. L., Sandmeyer S. B. Ty3, a yeast retrotransposon associated with tRNA genes, has homology to animal retroviruses. Mol Cell Biol. 1988 Dec;8(12):5245–5256. doi: 10.1128/mcb.8.12.5245. [DOI] [PMC free article] [PubMed] [Google Scholar]
  13. Holzschu D. L., Martineau D., Fodor S. K., Vogt V. M., Bowser P. R., Casey J. W. Nucleotide sequence and protein analysis of a complex piscine retrovirus, walleye dermal sarcoma virus. J Virol. 1995 Sep;69(9):5320–5331. doi: 10.1128/jvi.69.9.5320-5331.1995. [DOI] [PMC free article] [PubMed] [Google Scholar]
  14. Jacobo-Molina A., Ding J., Nanni R. G., Clark A. D., Jr, Lu X., Tantillo C., Williams R. L., Kamer G., Ferris A. L., Clark P. Crystal structure of human immunodeficiency virus type 1 reverse transcriptase complexed with double-stranded DNA at 3.0 A resolution shows bent DNA. Proc Natl Acad Sci U S A. 1993 Jul 1;90(13):6320–6324. doi: 10.1073/pnas.90.13.6320. [DOI] [PMC free article] [PubMed] [Google Scholar]
  15. Kohlstaedt L. A., Wang J., Friedman J. M., Rice P. A., Steitz T. A. Crystal structure at 3.5 A resolution of HIV-1 reverse transcriptase complexed with an inhibitor. Science. 1992 Jun 26;256(5065):1783–1790. doi: 10.1126/science.1377403. [DOI] [PubMed] [Google Scholar]
  16. Lunger P. D., Clark H. F. Intracytoplasmic type A particles in viper spleen cells. J Natl Cancer Inst. 1977 Mar;58(3):809–811. doi: 10.1093/jnci/58.3.809. [DOI] [PubMed] [Google Scholar]
  17. Lunger P. D., Hardy W. D., Jr, Clark H. F. C-type virus particles in a reptilian tumor. J Natl Cancer Inst. 1974 Apr;52(4):1231–1235. doi: 10.1093/jnci/52.4.1231. [DOI] [PubMed] [Google Scholar]
  18. Malik K. T., Even J., Karpas A. Molecular cloning and complete nucleotide sequence of an adult T cell leukaemia virus/human T cell leukaemia virus type I (ATLV/HTLV-I) isolate of Caribbean origin: relationship to other members of the ATLV/HTLV-I subgroup. J Gen Virol. 1988 Jul;69(Pt 7):1695–1710. doi: 10.1099/0022-1317-69-7-1695. [DOI] [PubMed] [Google Scholar]
  19. Marlor R. L., Parkhurst S. M., Corces V. G. The Drosophila melanogaster gypsy transposable element encodes putative gene products homologous to retroviral proteins. Mol Cell Biol. 1986 Apr;6(4):1129–1134. doi: 10.1128/mcb.6.4.1129. [DOI] [PMC free article] [PubMed] [Google Scholar]
  20. Martineau D., Bowser P. R., Renshaw R. R., Casey J. W. Molecular characterization of a unique retrovirus associated with a fish tumor. J Virol. 1992 Jan;66(1):596–599. doi: 10.1128/jvi.66.1.596-599.1992. [DOI] [PMC free article] [PubMed] [Google Scholar]
  21. Maurer B., Bannert H., Darai G., Flügel R. M. Analysis of the primary structure of the long terminal repeat and the gag and pol genes of the human spumaretrovirus. J Virol. 1988 May;62(5):1590–1597. doi: 10.1128/jvi.62.5.1590-1597.1988. [DOI] [PMC free article] [PubMed] [Google Scholar]
  22. Moore R., Dixon M., Smith R., Peters G., Dickson C. Complete nucleotide sequence of a milk-transmitted mouse mammary tumor virus: two frameshift suppression events are required for translation of gag and pol. J Virol. 1987 Feb;61(2):480–490. doi: 10.1128/jvi.61.2.480-490.1987. [DOI] [PMC free article] [PubMed] [Google Scholar]
  23. Papas T. S., Dahlberg J. E., Sonstegard R. A. Type C virus in lymphosarcoma in northern pike (Esox lucius). Nature. 1976 Jun 10;261(5560):506–508. doi: 10.1038/261506a0. [DOI] [PubMed] [Google Scholar]
  24. Power M. D., Marx P. A., Bryant M. L., Gardner M. B., Barr P. J., Luciw P. A. Nucleotide sequence of SRV-1, a type D simian acquired immune deficiency syndrome retrovirus. Science. 1986 Mar 28;231(4745):1567–1572. doi: 10.1126/science.3006247. [DOI] [PubMed] [Google Scholar]
  25. Querat G., Audoly G., Sonigo P., Vigne R. Nucleotide sequence analysis of SA-OMVV, a visna-related ovine lentivirus: phylogenetic history of lentiviruses. Virology. 1990 Apr;175(2):434–447. doi: 10.1016/0042-6822(90)90428-t. [DOI] [PubMed] [Google Scholar]
  26. Renne R., Friedl E., Schweizer M., Fleps U., Turek R., Neumann-Haefelin D. Genomic organization and expression of simian foamy virus type 3 (SFV-3). Virology. 1992 Feb;186(2):597–608. doi: 10.1016/0042-6822(92)90026-l. [DOI] [PubMed] [Google Scholar]
  27. Repaske R., Steele P. E., O'Neill R. R., Rabson A. B., Martin M. A. Nucleotide sequence of a full-length human endogenous retroviral segment. J Virol. 1985 Jun;54(3):764–772. doi: 10.1128/jvi.54.3.764-772.1985. [DOI] [PMC free article] [PubMed] [Google Scholar]
  28. Sagata N., Yasunaga T., Tsuzuku-Kawamura J., Ohishi K., Ogawa Y., Ikawa Y. Complete nucleotide sequence of the genome of bovine leukemia virus: its evolutionary relationship to other retroviruses. Proc Natl Acad Sci U S A. 1985 Feb;82(3):677–681. doi: 10.1073/pnas.82.3.677. [DOI] [PMC free article] [PubMed] [Google Scholar]
  29. Schwartz D. E., Tizard R., Gilbert W. Nucleotide sequence of Rous sarcoma virus. Cell. 1983 Mar;32(3):853–869. doi: 10.1016/0092-8674(83)90071-5. [DOI] [PubMed] [Google Scholar]
  30. Smyth D. R., Kalitsis P., Joseph J. L., Sentry J. W. Plant retrotransposon from Lilium henryi is related to Ty3 of yeast and the gypsy group of Drosophila. Proc Natl Acad Sci U S A. 1989 Jul;86(13):5015–5019. doi: 10.1073/pnas.86.13.5015. [DOI] [PMC free article] [PubMed] [Google Scholar]
  31. Sonigo P., Barker C., Hunter E., Wain-Hobson S. Nucleotide sequence of Mason-Pfizer monkey virus: an immunosuppressive D-type retrovirus. Cell. 1986 May 9;45(3):375–385. doi: 10.1016/0092-8674(86)90323-5. [DOI] [PubMed] [Google Scholar]
  32. Stephens R. M., Casey J. W., Rice N. R. Equine infectious anemia virus gag and pol genes: relatedness to visna and AIDS virus. Science. 1986 Feb 7;231(4738):589–594. doi: 10.1126/science.3003905. [DOI] [PubMed] [Google Scholar]
  33. Tristem M., Myles T., Hill F. A highly divergent retroviral sequence in the tuatara (Sphenodon). Virology. 1995 Jun 20;210(1):206–211. doi: 10.1006/viro.1995.1333. [DOI] [PubMed] [Google Scholar]
  34. Xiong Y., Eickbush T. H. Origin and evolution of retroelements based upon their reverse transcriptase sequences. EMBO J. 1990 Oct;9(10):3353–3362. doi: 10.1002/j.1460-2075.1990.tb07536.x. [DOI] [PMC free article] [PubMed] [Google Scholar]
  35. Yamamoto T., Kelly R. K., Nielsen O. Epidermal hyperplasias of northern pike (Esox lucius) associated with herpesvirus and C-type particles. Arch Virol. 1984;79(3-4):255–272. doi: 10.1007/BF01310815. [DOI] [PubMed] [Google Scholar]

Articles from Journal of Virology are provided here courtesy of American Society for Microbiology (ASM)

RESOURCES